Some answers for Homework 12

Math 406

Here are solutions to some of the trickier problems :
Section 7.1, \# 22: Show that if the equation $\phi(n)=k$ where k is a positive integer has exactly one solution n, then $36 \mid n$.
Proof. We proceed in fours steps; first we show $2 \mid n$, then $4 \mid n$, then $3 \mid n$, and finally $9 \mid n$. At that point we will know $36 \mid n$.

Assume n is odd. Then we have $\phi(2 n)=\phi(2) \phi(n)=\phi(n)$. But this violates the hypothesis that n is the unique solution to $\phi(n)=k$. Thus we know n is even.

Suppose that $n=2 m$ where m is odd. Then as above we get $\phi(n)=\phi(m)$, again violating the hypothesis. This shows that $4 \mid n$.

At this point we can write $n=2^{a} m$, where m is odd and $a \geq 2$. Suppose that $(2, m)=$ $(3, m)=1$. Then we have $\phi(n)=2^{a-1} \phi(m)$. But also, $\phi\left(2^{a-1} \cdot 3 \cdot m\right)=2^{a-2} \cdot 2 \cdot \phi(m)=$ $2^{a-1} \phi(m)$, which violates the hypothesis on n since $n \neq 2^{a-1} 3 m$. Hence $3 \mid n$.

Finally suppose that $n=2^{a} 3 m$, where $(2, m)=(3, m)=1$. Then $\phi(n)=2^{a} \phi(m)=$ $\phi\left(2^{a+1} m\right)$, again violating the hypothesis since $n \neq 2^{a+1} m$. Thus $9 \mid n$ and we are done.

Section 7.3, \#14: Show that if $n=p^{a} q^{b}$, where p and q are distinct odd primes and a and b are positive integers, then n is deficient.
Proof. We need to show that $2 p^{a} q^{b}>\sigma\left(p^{a} q^{b}\right)$. Using the fact that σ is multiplicative together with the formula for σ on prime powers, we see that we need to show

$$
2 p^{a} q^{b}>\left(\frac{p^{a+1}-1}{p-1}\right)\left(\frac{q^{b+1}-1}{q-1}\right) .
$$

Clearing denominators this becomes

$$
2(p-1)(q-1) p^{a} q^{b}>\left(p^{a+1}-1\right)\left(q^{b+1}-1\right) .
$$

Dividing both sides by $p^{a} q^{b}$, this becomes

$$
2(p-1)(q-1)>\left(p-\frac{1}{p^{a}}\right)\left(q-\frac{1}{q^{b}}\right) .
$$

To get a feel whether this is true, imagine letting a and b be arbitrarily large. Then if the above inequality were true, it would imply (by letting $a, b \rightarrow \infty$), that

$$
2(p-1)(q-1) \geq p q
$$

Conversely, if we could establish this latter inequality, the former one would also follow, since no matter what a and b are, we certainly have $p q>\left(p-\frac{1}{p^{a}}\right)\left(q-\frac{1}{q^{b}}\right)$.

Now, to prove $2(p-1)(q-1) \geq p q$, we first transform this by dividing both sides by $p q$; we see we need to prove

$$
2\left(1-\frac{1}{p}\right)\left(1-\frac{1}{q}\right) \geq 1 .
$$

Now recall that without loss of generality $p>q$ and p, q are odd primes, so that $p>4$ and $q \geq 3$. Thus the left hand side above is greater than

$$
2\left(1-\frac{1}{4}\right)\left(1-\frac{1}{3}\right)=2\left(\frac{3}{4}\right)\left(\frac{2}{3}\right)=1
$$

We are done.

