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Abstract

We construct local models of Shimura varieties and investigate their singularities,
with special emphasis on wildly ramified cases. More precisely, with the exception
of odd unitary groups in residue characteristic 2 we construct local models, show
reducedness of their special fiber, Cohen—Macaulayness and in equicharacteristic also
(pseudo-)rationality. In mixed characteristic we conjecture their pseudo-rationality.
This is based on the construction of parahoric group schemes over two dimensional
bases for wildly ramified groups and an analysis of singularities of the attached Schu-
bert varieties in positive characteristic using perfect geometry.
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1 Introduction
1.1 Background

Let O be a complete discretely valued ring with fraction field K and with residue field
k of characteristic p > 0, which for simplicity we assume is algebraically closed. Let
G be a (connected) reductive group over K.

The local models we consider in this paper are certain flat projective O-schemes
which model the singularities of integral O-models of Shimura varieties (in the case of
mixed characteristic) and of G-shtukas (in the equicharacteristic case) with parahoric
level structure.

Local models attached to PEL type Shimura varieties with parahoric level structure
at a given prime number were developed in the book of Rapoport and Zink [61], and
were defined there in a linear algebra style using moduli spaces of self-dual lattice
chains in certain skew-Hermitian vector spaces. The local models were proved to be
étale locally isomorphic to the corresponding integral models of the Shimura varieties
defined using analogous chains of polarized abelian schemes with additional structure.
This has two important consequences:

(1) The singularities in the special fiber of the Shimura variety coincide with those of
its local model, which can be studied more directly;

(2) The sheaf of nearby cycles on its special fiber can be determined from the corre-
sponding object on the local model.

The approach in (1) goes back to de Jong [16], who used it to determine the singu-
larities appearing in Siegel modular 3-folds with Iwahori level structure at p (Shimura
varieties attached to GSp(4)); it was also exploited by many other authors, see [12, 18,
19, 23, 54, 56, 57, 59] for example. The method in (2) is a key ingredient in the study
of local Hasse—Weil zeta functions of Shimura varieties with parahoric level structure;
see the survey articles of Rapoport [62] and the second named author [27, 28].
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Singularities of local models

For more general Shimura varieties (as well as for moduli spaces of shtukas) a
more purely group-theoretic construction of local models — also satisfying (1) and (2)
above—is desirable, in parallel to Deligne’s group-theoretic axiomatic construction
of Shimura varieties [17]. Such constructions also have the benefit of tying the theory
of Shimura varieties more closely to Schubert varieties, loop groups, and other objects
appearing in the geometric Langlands program. This also gives hints about how to make
the construction itself, with the help of Beilinson—Drinfeld affine Grassmannians.

The sought-after local models, which we denote by ]\7Ig, - arise as the seminormal-
izations of certain orbit closures Mg , inside a Beilinson-Drinfeld Grassmannian,
and are associated to a parahoric group scheme G over O extending G, a geometric
conjugacy class p of cocharacters of G and certain auxiliary additional data in the
mixed characteristic case, see Sect.5.2. The schemes are constructed by Zhu in [72]
and by Pappas—Zhu in [60] for all G splitting over a tamely ramified extension of K.
Their construction in the mixed characteristic setting is extended by Levin in [46] to all
groups G which are restrictions of scalars of tamely ramified groups, so covering all
G (up to central isogeny) in the cases where p > 5. In the equal characteristic setting,
the construction for arbitrary groups is given in [64]. (In all these cases, flatness of the
local models so defined is automatic, in contrast with the lattice-theoretic proposals
in [61], which in certain cases failed to be flat, as first pointed out by Pappas. On the
other hand, unlike [61], these group-theoretic local models are not given by explicit
moduli problems.)

One of the main results of [72] and [60] is that when p t |71(Gger)| the orbit
closures Mg , are normal (hence coincide with Mg) ) with reduced special fiber,
all of whose components are normal, Cohen—-Macaulay and compatibly Frobenius
split. They also conjecture that under the same conditions the local models are always
Cohen—Macaulay [60, Remark 9.5 (b)]. This is proved by He in [34] in the case that
G is unramified and w is minuscule and by the second and fourth named author [26,
Theorem 2.3] for p > 2 in all cases where local models had been constructed. In the
case when p | |m1(Gger)l, it is known by [32], that the orbit closures Mg, are not
normal in general, so instead one passes to their seminormalizations Mg . Which then
have the aforementioned properties.

The paper at hand extends the above results to all G and all p with the exception
of one family of examples: ramified odd unitary groups G in the case p = 2, see also
Remark 2.2. More precisely, excluding this family we construct local models Mg ,,
also for wildly ramified groups G which are not necessarily restrictions of scalars of
tamely ramified groups, and we prove that these models are normal, Cohen—Macaulay
and have reduced special fibers all of whose components are also normal, Cohen—
Macaulay and compatibly Frobenius split. The reader is referred to Lemma 5.23 for
the relation with the construction of local models via z-extensions from [36, Section
2.6]. Let us now explain our main results in more detail.

1.2 Main results

Fix O C K withresidue field k and G as above. Denote by @ the relative root system
of G. If G ranges through all absolutely simple groups, then ®¢ is non-reduced if and
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only if G is an odd unitary group, see Sect.2. Our first main result is Theorem 5.4 in
the main text and concerns local models in equicharacteristic:

Theorem 1.1 Assume that K >~ k(t)) has characteristic p > 0. Also assume that
p > 2or Og isreduced. Then the local model Mg wlis Cohen—Macaulay, has rational
singularities, and reduced special fiber equal to the admissible locus Ag -

For the definition of the adm1551ble locus Ag u» the reader is referred to Defini-
tion 5.3. We also note that Mg u = Mg, when p 1 171(Gger)l, see Remark 5.5 and
Remark 5.15. In Corollary 5.8, we also calculate the Picard group of Mg’ e

Our second main result is Theorem 5.14 in the main text and concerns mixed
characteristic local models:

Theorem 1.2 Assume that K has characteristic 0. Also assume that p > 2 or ®¢ is
reduced. Then the local model Mg ,, is Cohen—Macaulay and has a reduced special

fiber equal to the ' -admissible locus Ag/ o Af Ag/ » is irreducible (for example, G
special parahoric), then Mg u has pseudo- ratlonal smgulartttes

Here G’ and i’ are equicharacteristic analogues of G and p associated to them via a
choice of O[[¢]|-grouplift G, see Sect. 2. Asabove, Mg , = Mg, , when p 1171 (Gder)|,
and see Corollary 5.19 for its Picard group. Theorem 1.2 is slightly weaker than
Theorem 1.1 in that we do not prove that the singularities of 1\7Ig, 1 are always pseudo-
rational. However, we conjecture that this is always the case, see Conjecture 5.20.

1.3 Methods

We now explain our methods and the structure of this paper. The main input needed
to construct the local model (in mixed characteristic) is, as in [60], the construction
of a lifting of the parahoric group scheme G over O to a group scheme G over O[[1]].
The special fiber of the local model is then a closed subscheme of a partial affine flag
variety over k and to analyze this we also need to construct lifts of parahoric group
schemes over k[[¢]] to W (k)[[¢]]. These steps were carried out for tame groups in [55,
60].

So we need to extend these constructions to wild groups. The group lifts are con-
structed in Sect. 2 using ideas from [49]: we define suitable integral models of maximal
tori and root groups separately which induce birational models and then apply the
result that such a model extends to a unique group scheme. The reason that we have
to exclude the case of odd unitary groups stems from this very first step since we are
unable to construct the lifts of root groups in the case of multipliable roots when G is
ramified and p = 2, see Remark 2.2.

In Sect. 3 we start with a review of F-singularities and (pseudo-)rational singulari-
ties. These techniques are central to the study of singularities of local models in later
sections. Conjecture 3.6 states a conjectural mixed characteristic analogue of a result
of Schwede and Singh [40, Appendix A], which would imply pseudo-rationality of
mixed characteristic local models, see also the discussion below.

The first step in analyzing the singularities of local models is the study of the singu-
larities of Schubert varieties Sy, in affine flag varieties. We carry this out in Sect. 4, first
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proving in Theorem 4.1 that the seminormalizations S, are always normal, Cohen—
Macaulay, compatibly Frobenius split and have rational (in fact, even F-rational)
singularities. We use the by now standard method of applying the Mehta—Ramanathan
criterion for Frobenius splitting, but we need some extra arguments for p = 2, 3. In
Theorem 4.25, we then show thatif p > 2 or @ is reduced, then all Schubert varieties
Sy are normal if and only if p does not divide the order of 71 (Gger).-

In Sect. 5, we construct our local models and prove our main results. In the equichar-
acteristic case, the local model is canonical. In mixed characteristic, it depends on the
choice of the group lift G constructed in Proposition 2.6. For minuscule p, which
is the case relevant to Shimura varieties, it is expected that these are independent of
all choices, see [66, Conjecture 21.4.1], [36, Conjectures 2.12, 2.15] and also [1]. To
identify the special fiber and prove that it is reduced, we follow the method of [72]
and [60] based on the coherence conjecture. This is fairly straightforward, given the
results of Sect.4. It then remains to prove that the special fiber is Cohen—Macaulay.
To do this, we use a variant of the argument used in [26, Section 6], which has the
advantage of also being applicable in characteristic 2 since it does not depend on
Zhu’s global Frobenius splitting [72, Theorem 6.5]. The proof uses some results in
commutative algebra by Schwede and Singh [40, Appendix A] to deduce that in
equicharacteristic p the local models are Cohen—Macaulay and have F-rational (hence
pseudo-rational) singularities. In the case of mixed characteristic, we get the reduced-
ness and Cohen—Macaulayness of the special fiber of the local model by comparing
with the equicharacteristic case. However, it does not seem possible to immediately
transfer pseudo-rationality from equal characteristic to mixed characteristic. Motivated
by this we discuss the above mentioned conjectural mixed characteristic analogue
(Conjecture 3.6) of one of the results of Schwede and Singh which, given our other
results, would suffice to deduce the pseudo-rationality of local models in mixed char-
acteristic.

1.4 Relationship with the perfectoid theory

Let us comment on the relationship between this work and the other recent works [1, 22]
by some of the authors. The first paper [1] studied at length a perfectoid analogue of the
local model constructed in Scholze—Weinstein’s book [66]. An important conjecture in
[66] postulated that these perfectoid local models, despite only being v-sheaves, should
be representable by a flat, normal, and projective scheme over O with reduced special
fiber. This was proved in [1, Section 7] under Hypothesis 2.1 and Hypothesis 5.24,
using the constructions of this paper as an input and comparing them to the v-sheaves
of perfectoids via a specialization principle. However, we stress that the results in
[1] concerning the singularities of local models like reducedness of their special fiber
and Cohen—Macaulayness rely on the present paper. As for [22], it gives a new proof
that local models are normal with reduced special fiber, including the missing cases
of Hypothesis 2.1 and Hypothesis 5.24. The statements in [22] related to Frobenius
splittings of the special fiber or Cohen—Macaulayness rely again on the present paper.
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2 Group lifts to two-dimensional bases

In our presentation we follow [49, Sects. 2-3] to construct group lifts via gluing
from birational group laws. The method works for Witt lifts (equal characteristic) and
Breuil-Kisin lifts (mixed characteristic) in the same way which we, however, treat in
the separate Sects.2.1 and 2.2 for readability. We start by fixing some notation.

Let O denote a complete discretely valued ring with fraction field K and perfect
residue field k of characteristic p > 0. Let 0 /O be the completion of the maximal
unramified extension with fraction field K /K. Let G be a reductive K-group that is
quasi-split (automatic if K = K by Steinberg’s theorem) and either simply connected
or adjoint. Denote by G = G ®x K the base change.

Assume G is also almost K -simple. Then G = Resy /x (Go), for some finite sepa-
rable field extension L /K, of an absolutely almost simple L-group Gy [5, Sect. 6.21
(ii)], which is necessarily quasi-split and simply connected or adjoint, respectively.
Choose a separable field extension M /L of minimal degree such that G splits over
its Galois hull. As the only non-trivial automorphism groups of connected Dynkin
diagrams are Z/2 and S3, the extension M /L is of degree < 3.

In this section, we also work under the following:

Hypothesis 2.1 If p = 2, then the relative root system ®  is reduced.

An examination of the tables in [71] shows that ® & is non-reduced if and only if
the associated absolutely almost simple group Go = Go ®x K is isomorphic to an
odd unitary group. So Hypothesis 2.1 excludes this case if p = 2.

Fix a maximal K-split torus S C G with centralizer equal to a maximal torus 7
and a Borel subgroup B containing it. Let H/Z be the split form of G equipped with
a pinning. Choose a Chevalley—Steinberg system for H, see [49, Section 2.1]. Let
K* /K be a Galois extension splitting G, and fix an isomorphism

Gk K* = H®zK* Q2.1

preserving the chosen maximal tori and Borel subgroups such that the Gal(K* /K )-
action transported to the target acts by pinned automorphisms, so G = Resgs/x (H ®z
K%)Ga(K*/K) 1y Galois descent.

The Chevalley—Steinberg system for H induces a Chevalley quasi-system for the
quasi-split group G in the sense of [49, Définition 2.2.6, Proposition 2.2.7]. Essentially,
this is the choice of the pair S C B in G along with a family of isomorphisms

Xqa: Uy

~ [r
=N { esL./k Ga 2.2)

ResL2a/KHLa/L2a

foralla € dbléd with d%i C g the subset of non-divisible roots and U, the corre-
sponding root subgroup. Here, if ®¢ is reduced, then L, = M if a € ®g is short
and L, = Lifa € & is long. If ® is non-reduced, then L, = M D L = Ly, if
2a € ®g and Hy,,1,, is the Ly,-group described in [9, 4.1.9]. Here, the quadratic
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extension L, /Ly, is allowed to be ramified if p > 2 but must be unramified if p = 2
by Hypothesis 2.1. This induces a Chevalley valuation of <7 (G, S, K), see [9, 4.2.2],
which we then regard as the origin of that affine space, which then becomes identified
with 7/(S) = X« (S) @ R.

Remark 2.2 Let us comment on the various hypotheses on G.

(1) If we wished to include the case where p = 2 and @ is non-reduced, the structure
of U, would be arithmetically more involved, particularly as the subset M? c M
of trace zero elements does not behave so well, see [9, Sections 4.1.10, 4.2.20]. For
instance, the valuation of M° divides the quadratic separable extensions into those
given by roots of primes and the rest of them, see [9, Lemmes 4.3.3, 4.3.4]. Root-
of-prime extensions are treated in [49] relying on the theory of pseudo-reductive
groups. For the other quadratic extensions, we do not know, for example, how to
construct the groups U, that appear below.

(2) The case of quasi-split and simply connected (respectively, adjoint) groups G
appears to be most important when studying the geometry of Schubert varieties
and local models. Note that for such G the maximal torus T is induced [9, Propo-
sition 4.4.16], which is a technical convenience, see the proof of Lemma 2.5. If
we wished to include more general central extensions of G with induced maximal
torus, we could follow the construction in [49, Sect. 2.4], see also Sect.5.3.1 for a
particular interesting case. Further, it should be possible, though difficult, to extend
the construction of group lifts below to not necessarily quasi-split groups using
étale descent [9, Sect. 5].

2.1 Witt lifts

In this subsection, we assume that K is a Laurent series field of characteristic p > 0.

Choosing uniformizers u of L and ¢ of K, we identify their rings of integers O; =

krl[ull and O = k[[¢]] as k-algebras. The uniformizers satisfy an Eisenstein equation:
Ut o1 Du -+ a (Du+agt) =0 (2.3)

where each of the

ai(ty ="y bt/ (2.4)

is a power series with b;; € kr, bjo = 0 and by; # 0. Consider now the defining
equation

U+ [ae—1 (O™ + -+ [ar()]u + [ag(H)] = 0 2.5)
where each of the
la; ()] =Y _[bij1t/ (2.6)
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is a power series in W (kp)[[¢]] obtained by taking Teichmiiller representatives of
the coefficients. Then (2.5) defines the finite free W (k)[[z]]-algebra W (kr)[u]l,
which reduces modulo p to the k[[t]]-algebra kz [[u]l. Similarly, we lift Op// Oy to
W (ka)[[v]l/W (kp)[[u]l via a choice of uniformizers.

Lemma 2.3 The  quasi-pinned  K-group (G, B, S, (xa)aeq,ncd) lifts  to
(G,B,S, ()C_a)aecpr&d) defined over the maximal open subset U C Spec W (k)[[t]] over
which the extension W (ky)[[v]l/ W (k)[[t]] is étale.

Proof Firstly, the split form H/Z of G with its Chevalley—Steinberg system induces
a split form Hy/Z of G¢ with such a system. As quasi-pinnings are compatible with
restriction of scalars along finite étale maps, we reduce to the case G = Gy is abso-
lutely almost simple and without loss of generality also non-split. Let V be the Galois
hull of the finite étale map V := f_l(U) — U where f: Spec W(ky)[[v]] —
Spec W(k)[[¢]. As f is ramified at {t = 0}, we have U C Spec W (k)(¢) and the
reduction of V — U modulo p defines a Galois ring extension K /K splitting G.
Hence, Gal(V /U) — Gal(K /K) acts through (2.1) by pinning preserving automor-
phisms on H, replacing K* by K if necessary. We define

G = Resy ; (H @ V)47, 2.7

equipped with the quasi-pinning induced from the chosen Chevalley—Steinberg system
for H, which satisfies the requirements of the lemma. O

Note that W (k)((#)) is a Euclidean domain which is not local. Even though the
extension W (kps)(v)/W (k)(t) is ramified in general, we can extend G from U over
Spec W (k)((t) via a birational extension process as follows. Note that we have the
maximal torus T in G defined over U. We consider the family of group schemes
consisting of the connected Néron W (k) (#)-model of T denoted by the same symbol,
and the unipotent group schemes

Res G
U, = W (ka)(ta)/ W (k) (1) Ta 2.8)
ReSW (kp) (1200 / W ) (VLW () (1) W (2 (120

for every non-divisible root a € ®g, extending the quasi-pinning defined in
Lemma 2.3. Here, the symbols k, denote the residue field of the root fields L,,
and the variables 7, are either one of the prescribed lifts u or v of the uniformizer of
L, depending on whether it equals L or M.

Lemma 2.4 The models (T, U,) glue birationally to a smooth, affine W (k) (t))-group
G with connected fibers extending (2.7).

Proof This follows from the method of [49, Proposition 3.3.4]. Here we give an
overview of the argument.

First, we must show that the axioms of [9, Définition 3.1.1] are satisfied: These
involve showing that the conjugation action of T’ on the U, the commutator morphisms
between U, and U}, for linearly independent roots, and a rationally defined morphism

@ Springer



Singularities of local models

exchanging the order of =a in a rank 1 big cell extend from U (defined in Lemma 2.3)
to all of Spec W (k)((#). In the rank 1 case, we can construct G explicitly by extending
the definition of G over U, isogenous to a restriction of scalars of either SL; or SU3,
to the more general ring extensions that we consider; this provides us with the first
and third morphisms using the Néron property of 7. Hence, the main concern are
commutator morphisms. Over the generic fiber, these morphisms are given explicitly
in [9, Sect. A.6], up to sign and conjugation, and only involve natural operations such
as sum, multiplication, trace and norm, so they are still well-defined over W (k)(?)).
For example, if @ is reduced, and a, b are short roots with long sumc¢ = a+b € ®g,
then the commutator y, 5 is given on points under the fixed pinnings by

(x,y) = trRp1/R(XY), 2.9

where R is any W (k.)((t.)-algebra, and x, y € R[t;] = R Qw.)(z.) W (ka)(#a)), up
to ignoring sign and conjugation. It is now a consequence of [49, Théoreme 3.2.5]
that there is a smooth affine W (k) (¢))-group G with connected fibers glued from these
closed subgroups. Here, for affineness we use the fact that W(k)((#) is a Dedekind
ring. O

We already know that G is reductive over k (¢)) and Ko (1)), where Ko = W (k)[p~'].
We can compare a portion of their Bruhat-Tits theory.

Lemma 2.5 There are identifications
A(G, S, k(1) =~ A (G, S, Ko(1)), (2.10)

of apartments, equivariant along a natural identification of the Iwahori—Weyl groups.

Proof Our method of proof is similar to [49, Proposition 3.4.1]. We fix as origin of
the apartments the Chevalley—Steinberg valuations determined by the quasi-pinning
inherited from (2.8). Then, both identify with the real vector space 7'(S) generated
by the coweights of the split torus S compatibly with the hyperplanes.

As G is assumed to be either simply connected or adjoint, the maximal torus T is
induced and so is T over U. We denote by 7 its connected Néron W (k)[[#]]-model, see
[49, Définition 3.3.3] and [50, Part IV, Proposition 3.8]. Let N be the normalizer of S
in G. In order to identify the Iwahori—Weyl groups, we prove that they are isomorphic
to

NW & @) /W E©&:1) (2.11)
via the natural maps as follows. It suffices to show that the natural maps

TWE@N/ZWEMID) — TL@))/T LI (2.12)

and
NWE@)/TWE)(2)) — NL@))/T (L)), (2.13)
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are isomorphisms, where L equals either k or K. The first case (2.12) is verified by
decomposing 7 as a product of restriction of scalars of multiplicative group schemes.
The second case (2.13) is a consequence of constancy of the Weyl group of a split torus
and vanishing of H' for T. One sees readily that these comparison isomorphisms are
compatible with those of the apartments and the corresponding group actions. O

For any point x in the apartments, we have a certain optimal quasi-concave function
fx: &G — Rin the sense of [9, Sect. 4.5], defined with respect to the chosen origin,
the Chevalley—Steinberg valuation. We use this to define the W (k)[[¢]l-models U, .
via

Resyw (k)i /W o (16" Ga

ua,x =
ReSW (ko) 1201/ W )11 (

’

Ca Jx seq fr (2
R R AT L )

(2.14)

where the e, are the ramification degrees of the root field extension L,/K, and by
construction the e, fx (a) are integers.

Proposition 2.6 The models T andU, x foralla € CIDréd birationally glue to a smooth,
affine W (k)[[¢]]-group scheme % with connected fibers. Its reductions to k[[t]] and
Kollt]l are parahoric group schemes coming from facets which correspond under
(2.10).

Proof To see that the models 7" and U, , for all a € <I>“Gd satisfy the axioms of [9,
Définition 3.1.1], we can proceed as in [49, Proposition 3.4.5]: due to the equality
W(&k)() N Kollt]l = W (k)21 it suffices to apply [9, Théoreme 3.8.1] to prove the
existence of a birational group law. So it glues to a smooth and separated group scheme
G, with connected fibers due to [49, Théoréeme 3.2.5].

" This group scheme is quasi-affine and admits a smooth affine hull, whose geomet-
ric fibers are connected outside the unique closed point of Spec(W (k)[[#]]), by [49,
Proposition 3.2.7]. In order to check affineness, we apply verbatim the proof in [49,
Théoréme 3.4.10]: indeed, this relies on the identification of the Iwahori—Weyl groups
given in Lemma 2.5. O

2.2 Breuil—Kisin lifts

In this subsection, we assume that K has characteristic zero. So L/K is a finite exten-
sion of complete discretely valued fields of characteristic zero with perfect residue
fields ky, /k of characteristic p > 0. Define also L™ /K as the maximal unramified
subextension of L/K, so L/L™ is totally ramified. Choosing uniformizers w; of L
and g of K, they satisfy an Eisenstein equation:

f + ae—1(rg) " 4o 4 ao (k) =0, (2.15)

where each of the a; (mx) € mx O is a power series in wx with coefficients being
Teichmiiller representatives of elements in k; and satisfying the usual constraints,
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compare with (2.3). Assume without loss of generality that there exists i with (i, p) =
1 and

ai (k) # 0. 2.16)

This can be achieved by replacing r;, by 71 + g, if needed. Consider, in analogy to
(2.5), the equation

ué 4 [ae—1 (D)™t + [ag()] = 0, (2.17)

where u and ¢ are indeterminates, each of the [a; (r)] € W (kp)[[z] is obtained from
a; (k) by taking the coefficients and by replacing wx by ¢. Equation (2.17) defines the
finite free W (k)[[¢]]-algebra W (k1 )[[u]]. We repeat this procedure for M /L: choose a
uniformizer my of M satisfying the analogue of (2.16) with respect to 77, an indeter-
minate v and define the finite free W (kp)[[u]l-algebra W (kjs)[[v]]. Tensoring with O
over W (k), we arrive at the finite free ring extensions

Ollz]] C O [lull C Opyre[lv], (2.18)

where L™ and M™ are the maximal unramified subextensions of L/K and M /K,
respectively. The tower (2.18) reduces modulot —mx to O C Op C Oyy;its reduction
modulo mg is k[[t]] C krllull C ky[[v] with separable fraction field extensions by
(2.16).

As for the group G endowed with its quasi-pinning (B, S, (x,) ae@f(l;d), these data
also lift to an open neighborhood U C Spec O[[¢]] of the points (7k) and (¢ — k)
in analogy to Lemma 2.3, and we denote the resulting U-groups by G, B, T and S as
before. To extend G from U over Spec O ((t)), we proceed again via a gluing procedure
using extensions of birational group laws. Consider the family of group schemes
consisting of the connected Néron O((#)-model T (note that O(¢)) is a Dedekind
domain), and the unipotent group schemes

(2.19)

| Reso,m ()0 Ga
Res0,u (120)/ 0V Ho g (10)/ 00 (120

for every roota € <I>‘(‘;d, extending the generic quasi-pinning. Here, the variables #, are
either ¢, u or v depending on the cases for the root fields L, for a € & explicated in
(2.2). We arrive at the following result:

Lemma 2.7 The models (T, (&)ae@éd) birationally glue to a smooth, affine O(t))-

group G with connected fibers. Furthermore, its fibers over K and k (t)) fork =k, K
are reductive, and there are identifications of apartments

A(G, S, K)~ (G, S, k()), (2.20)

equivariantly for the respective Iwahori—Weyl groups.
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Proof The proofs of Lemmas 2.4 and 2.5 translate literally. O

For any point x in the apartments (2.20), we have the quasi-concave function
fr: ©¢ — R, compare with (2.14). We define the O[[¢]-models U, , by

_ ReSOLErIIta]]/Ol[t]](tsan(a)Ga)

t(eafx(a)’eafx

Ua x = a))
Res 0, e 141/0111 1 HO i1/ 0y [1201)

)

2.21)

where the ¢, are the ramification degrees of the extensions L, /K and by construction
the e, fx (a) are integers. Let 7 be the connected Néron O[[¢]]-model of the induced
torus T';;, compare with the proof of Lemma 2.5.

Proposition 2.8 The models T andU, x foralla € d%d birationally glue to a smooth,
affine O[[t]]-group scheme G, with connected fibers. Its reductions to O and «[[t]],
with k = k, K are parahm; group schemes coming from facets which correspond
under (2.20).

Proof The proof of Proposition 2.6 applies verbatim. O

3 A conjecture on pseudo-rationality

We recall some definitions and facts from the theory of singularities, especially in pos-
itive characteristic. Conjecture 3.6 below is a mixed characteristic analogue of a result
of Schwede—Singh recalled in Lemma 3.2. Its proof would imply that mixed charac-
teristic local models also have pseudo-rational singularities, see Conjecture 5.20.

3.1 Review of F-singularities

A Noetherian scheme X over F, is said to be F-finite if the absolute Frobenius
morphism F: X — X is a finite morphism (for example, finite type schemes over
F-finite fields). It is said to be F-split if the canonical morphism Ox — F,Ox has
an Ox-linear splitting. We say X is stably F-split if for some ¢ > 0 the map Ox —
F?Ox splits, and the two notions are equivalent by [4, Lemma 5.0.3]. Moreover, a
closed subscheme Y C X is compatibly (stably) F -split if the corresponding splittings
respect the closed immersion, and again the stable notion is an equivalent one by [4,
Lemma 6.0.4]. A local IF ,-algebra (R, m) is said to be F'-injective if the map on local
cohomology Fy: Hy (R) — Hg (R) is injective (for example, local rings of F-split
schemes).

A Noetherian reduced F-finite IF ,-algebra R is said to be F-regular if every prime
ideallocalization Ry, has allits ideals tightly closed, see [39, Sect. 1]. If every parameter
ideal of such an Ry, is tightly closed, we say Ry, is F'-rational; see [38, Definition 4.1],
and also [21] or [68]. We say a Noetherian reduced F -finite IF ,-scheme has F'-rational
singularities if all of its local rings are F-rational.

@ Springer



Singularities of local models

A projective scheme X over an F-finite field is said to be globally F-regular
provided that for every ample invertible sheaf £, the section ring ), ., o H 0(x, £L®m)
is a strongly F-regular ring, in the sense of [39, Sect. 3] (see also [11, Definition 5.2]).
By [39, Theorem 3.1(d)], any strongly F-regular ring is F-regular (the converse is
expected but appears to be an open question in general). A key property of strong
F-regularity is that it passes to all prime localizations of the ring.

We shall use the following results, extracted from [39, 40, 69].

Lemma 3.1 A globally F-regular projective variety Proj(S) over a perfect field is
F-rational.

Proof By [69, Theorem 3.10], S is strongly F-regular. By [39, Theorem 3.1], all
localizations of S and all direct summands of such are strongly F'-regular. This means
the local rings of Proj(S) are strongly F-regular. Now by [39, Theorem 3.1(d)], they
are also F-regular, which means that all ideals are tightly closed. In particular these
local rings are F-rational. O

Lemma 3.2 Let R be an F-finite Noetherian local ring and t a non-zero divisor. If
R/(t) is F-injective and R[t~'1is F-rational, then R is F-rational.

Proof This is Schwede-Singh [40, Corollary A.4]. O

3.2 (Pseudo-)rational singularities

We follow [48, Sect. 2] (see also [68, Definition 1.8]):

An excellent (thus Noetherian) local ring (R, m) is said to be pseudo-rational it
it is normal, Cohen—Macaulay, admits a dualizing complex, and if for each proper
birational morphism 7 : ¥ — Spec(R) with Y normal, the canonical map

frwy — wpr 3.1)

is an isomorphism (or equivalently, is surjective on global sections [48, Sect. 4], or
equivalently by duality theory Hg(R) — Hﬁl(R f:Oy) = H}i.,l (m)(Oy) is injective
ford = dim(R)). An excellent scheme has pseudo-rational singularities (or is pseudo-

rational) if each of its local rings is pseudo-rational.

Remark 3.3 In order to establish pseudo-rationality, one may restrict to the class of
projective birational morphisms 7 : ¥ — Spec(R) with Y normal, by an application
of Chow’s lemma. Further, we note that the definition of pseudo-rationality in [51,
Definition 2.6] is weaker in that R is not required to be excellent or normal.

Lemma 3.4 Any excellent local F,-algebra R which is F-rational is also pseudo-
rational.

Proof This is [68, Theorem 3.1]. O

The next lemma is used in Theorem 5.14 to establish pseudo-rationality of special
local models:
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Lemma 3.5 Let R be a local ring of mixed characteristic (0, p) which is excellent,
normal and admits a dualizing complex. Let 1 € m be a non-zero divisor such that
R/(m) is an ¥ p-algebra. If R/(r) is F-rational, then R is pseudo-rational.

Proof Since R is assumed to be normal, this is [51, Theorem 3.8]. O

The following conjecture is a mixed characteristic analogue of Lemma 3.2. Since
it does not appear in the literature (but see the discussion at https://mathoverflow.net/
q/396462), we write it down here:

Conjecture 3.6 In the situation of Lemma 3.5, if R/(x) is F-finite and F-injective,
and R[m~'] is pseudo-rational, then R is pseudo-rational.

We conclude this section by recalling a stronger notion of rationality over a per-
fect field k. Let X be a finite type k-scheme. We say X has rational singularities if
it is Cohen—Macaulay and there exists a proper birational morphism f: Y — X of
k-schemes with Y smooth over k (in which case we say X has a resolution of singu-
larities) such that the natural map Ox — Rf, Oy is an isomorphism. It follows using
Grothendieck—Serre duality that if X has rational singularities then R fywy = 0 for
all i > 0. Moreover, it also follows that X has pseudo-rational singularities by [44,
Lemma 9.3], but we do not use this fact anywhere in the present paper. We note that
this notion of rational singularities is independent of the choice of resolution by [13,
Theorem 1].

4 Schubert varieties

Let k be an algebraically closed field of characteristic p > 0, K = k(t) be the
corresponding Laurent series field and O = k[[#]] the power series ring.

Let G be a reductive K-group. For each facet f C #(G, K) of the Bruhat-Tits
building, we denote by G = G¢ the associated parahoric O-group scheme extending
G, see [9, Définition 5.2.6 ff.].

The loop group LG, respectively positive loop group L*G, is the functor on the
category of k-algebras R given by LG(R) = G(R(1t)), respectively LTG(R) =
G(R[[tT). Then LTG C LG is a subgroup functor, and the (twisted partial) affine flag
variety is the étale quotient

Flg = LG/L*G, 4.1)

which is represented by an ind-projective k-ind-scheme by [55, Theorem 1.4].

In the following, we fix two facets f,f C (G, K) and denote by G = Gy,
G’ = Gy the associated parahorics. Given an element w € LG’ (k)\LG (k)/L*G(k),
the Schubert variety S, is the reduced LT G’-orbit closure of W - e in Flg, where w €
LG (k) is any representative of w and e the base point of FZ, see [55, Definition 8.3]
and compare with [26, Sect. 3]. Then S,, is a projective k-variety admitting the L™ G'-
orbit Cy, of w - e as a dense open subset. This induces a presentation on reduced
ind-schemes
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(FLG)reda = colim Sy, “4.2)

where w runs through the double cosets as above, and all transition maps S, — Sy
are closed immersions.

4.1 F-singularities of seminormalized Schubert varieties

Let §w — Sy, be the seminormalization [70, 0EUK], that is, the initial scheme mapping
universally homeomorphically to S,, with the same residue fields. In this subsection
we show the following result for general reductive K -groups:

Theorem 4.1 The seminormalized Schubert varieties §w are normal, Cghen—Macaulay,
compatibly F-split and have rational singularities. Furthermore, the Sy, are globally
F-regular, hence have F-rational singularities.

Here compatibly F-split carries the following meaning. By functoriality of semi-
normalizations [70, OEUS], there are maps S, — S, lifting the closed immersions
Sy — Sy from (4.2), yielding the (a priori non-strict) ind-scheme

Flg = colim S,,. (4.3)

In the course of the proof of Thegrem 4.1, we show that §v — gw are closed immer-
sions (see Lemma 4.5) and that Sy, is F-split compatibly with all closed subvarieties
Sy.

Remark 4.2 The methods from [20, Theorem 8], [55, Theorem 8.4] and [11, Theo-
rem 1.4] essentially imply Theorem 4.1 for all groups whose adjoint simple factors are
Weil restrictions of scalars of tamely ramified groups. Theorem 4.1 is new whenever
one of the absolutely simple factors is wildly ramified, therefore covering general
reductive K -groups.

Remark 4.3 There exist surfaces which have rational, but not F-rational, singularities
[33, Example 2.11]. Further, we note that by the proof of Lemma 3.1, we know
something slightly stronger than F-rationality, namely, the local rings of S, are F-
regular.

4.1.1 Preliminary reductions for the proof of Theorem 4.1

Recall the notation G = Gf, G’ = Gy'. Let S be a maximal K -split torus with f, f' C
(G, S, K), see [8, Theorem 7.4.18 (i)]. Fix an alcove a in the apartment containing
f in its closure, and denote by Z = G, the associated Iwahori O-group scheme. The
affine Weyl group Wyr (respectively, its subgroup W) is the Coxeter group generated
by the simple reflections along the hyperplanes meeting the closure of a (respectively,
passing through f). There is a natural bijection Wye/Wg = LTZ(k)\LG°(k)/L*G(k)
where LG denotes the neutral component. In order to prove Theorem 4.1, we may and
do assume without loss of generality that G’ = 7 and w € Wyr/Wg, as every Schubert
variety is isomorphic to one of this particular form by [26, Sect. 3.1, Corollary 3.2].
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In the following we identify the Bruhat order on the coset space Wyr / W compatibly
with the Bruhat order on the subset of right Wg-minimal representatives in Wy, see
[63,Lemma 1.6]. Suppose w € Wyr istight Wg-minimal. Fix areduced decomposition
as a product of simple reflections w = s1 -...-sq in Wy. Denote by Dy, the Demazure
variety for w, denoted D(w) in [55, Proposition 8.8]. By [26, Sect. 3.3], there is a
projective morphism

Dy — Sy, 4.4)

which is an isomorphism over the open Schubert cell Cy,, hence birational and surjec-
tive. For any v < w in the Bruhat order, the reduced decomposition w induces a (not
necessarily unique) reduced decomposition v of v, so there exists a closed immersion
Dy — Dy covering S, — Sy. The following lemma makes the connection to the
normalized Schubert varieties appearing in [26, 32]:

Lemma 4.4 The seminormalized Schubert varieties §w are normal.

Proof The normalization morphism S;”* — S,, is a universal homeomorphism [26,
Proposition 3.1 i)], which induces an isomorphism over C,, (because it is regular).
By the universal property of seminormalizations, it remains to show that S;°" — S,
induces an isomorphism on all residue fields. We observe that there are transition
maps S)°" — S;°" lifting the closed immersions S, — S,,, see the proof of [55,
Proposition 9.7 (b)] using the functoriality of the Demazure resolution (4.4). Now,
given a point x € S, lying in some cell C,, it induces a tower of residue field
extensions « (S;°", x) D k(S x) D k(Sy,x) = k(Cy, x). As SJ°" — S, is an
isomorphism over C,, all inclusions are equalities which implies the lemma. O

Lemma 4.4 implies that (4.4) factors through §w — Sy inducing the birational
projective morphism

f: Dy — Sy, 4.5)

with the property fOp,, = Og, ,compare [26, Sect. 3.3]. The proof of the next lemma
follows the arguments from [11, 45] and reduces Theorem 4.1 to the corresponding
result for Demazure varieties. The latter case is proved in Sect.4.1.4, see (4.26) for
details.

Lemma 4.5 Assume that the Demazure variety Dy is compatibly stably F-split with
the divisors Dy for all subwords ¥ of w of colength 1. Then Theorem 4.1 holds true.

Proof Recall that compatibly stably F-split varieties are compatibly F-split by [4,
Lemmas 5.0.3, 6.0.4]. Now, if Dy; is compatibly F-split with the divisors Dy for v of
colength 1, then Dy is compatibly F-split both with their union 9 Dy;, and D for all
subwords v of w by [7, Proposition 1.2.1].

Compatibility with @ Dy, implies that Dy; is globally F-regular (following the sec-
ond part of the argument in [11, Proposition 5.8] which applies verbatim). Recall that
we have an identity f,Op,; = Og where f denotes the map (4.5), compatibly with
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the Frobenius, which allows us to descend any F-splitting along the proper cover f.
More generally, we can apply [45, Lemma 1.2] to f and deduce Sy, is globally F-
regular. Lemma 3.1 implies that S,, has F-rational singularities. Then by Lemma 3.4,
§w is pseudo-rational, and in particular, is Cohen—Macaulay.

Next, consider the scheme-theoretic image 7, ,, of the map §v — §w and follow
the argument in [55, Proposition 9.7 (b)]. This is a k-variety with seminormalization
equal to S,. Since Dy is compatibly F-split inside Dy, we deduce that 7, ,, is also
compatibly F-split with S,, by pushforward along the map f. But F-split schemes
are weakly normal by [7, Proposition 1.2.5], and in particular seminormal, so we have
that T, ,, =~ EU. In other words, the maps §U — §w are closed immersions for all
v < w and compatibly F-split.

Finally, we handle rationality of Sw. We factor f as partial Demazure resolutions
having fibers of dimension at most 1

fi Dmig'v[ — D,

Uit+1

XSuii1s (4.6)

where we write w = u; - v; with; = s1-----sg_; and V; = sg—j+1 - - - S4. By
induction, it suffices to show vanishing of the higher direct images of the structure
sheaf along f;. Moreover, we may even ignore the factor D;;,, C Dy, and reduce to
the study of g: S, X Sv — Sw with w = sv being a reduced expresswn We claim that
for any (not necessarily closed) point x € Sw the fiber g ! (x) is either isomorphic to
Spec(k (x)) or to Pi(x): Indeed, if g~'(x) is O-dimensional, then the birational map
g becomes a universal homeomorphism of normal varieties around x, thus a local
isomorphism by Zariski’s main theorem; if g~ !(x) is 1-dimensional, then x c belongs
to S withu < vandsu < u,and we can dlrectly see that the fibers of /1 : S, X S — Su
are projective lines. Therefore, we have H i (g~ L(x), OSY % Sv) = Oforalli > 0, which

upgrades in the presence of an F-splitting to Rig*(’)s %5, = Oforalli > 0by [7,

Lemma 1.2.11]. Since Sw is Cohen-Macaulay, Grothendieck—Serre duality yields also
R fswp, = w3 5, This means Sw has rational singularities, as desired. O

Remark 4.6 The map Gyc — G from the simply connected group extends to the
Iwahori O-models, and the induced map on Demazure varieties Dy — Dy iS an
isomorphism, see [26, Proof of Lemma 3.8]. Further, Dy, factors as a product of
Demazure varieties according to the almost simple factors of G, and products of
(stably) compatibly F-split varieties are (stably) compatibly F-split [7, Sect. 1.3.E
(8)]. Therefore, in order to verify the assumption of Lemma 4.5, we may assume
whenever convenient that G = Gy is simply connected and (by the Weil restriction
of scalars case in [26, Lemma 3.9]) absolutely almost simple and that G = T is the
Iwahori group scheme.

4.1.2 Picard groups of perfected Schubert varieties
In this subsection, we calculate the Picard groups of perfected Schubert varieties and
the induced map on the Demazure resolution. This plays a role later in proving the

existence of F-splittings for Demazure varieties, which requires the construction of a
certain divisor that is more easily done on the Schubert varieties.
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For any v € War we consider the corresponding (Z, G)-Schubert variety S, and
its seminormalization S,. For the right Wg-minimal element w above, we fix a
choice of reduced expression w = s7 - ... - 54 and consider the Demazure resolu-
tion f: Dy — §w as in (4.5). For each simple reflection s € Wyr and any choice of
isomorphism of D; = ]P’1 the degree of line bundles induces a well-defined isomor-
phism deg: Pic(D;) =

Lemma 4.7 There is an isomorphism

Pic(Dy) —> 24, L+ (deg(Llp, )i-t....a- @7

Proof The method of [35, Proposition 3.4] applies as follows. Writing w = § - v with
§ =51,V = $2-...-5g induces an étale locally trivial fibration D;, — D; with general
fiber Dy. The fibration is Zariski locally trivial by [55, Proposition 8.7 (b)]. Hence,
[52, Theorem 5] gives an exact sequence 0 — Pic(D;) — Pic(Dy) — Pic(Dy) — 0,
which splits by using the section D; — D,;,. The lemma follows by induction. O

The universal homeomorphism S, —> S, induces an isomorphism on perfections

[3, Lemma 3.8], and we denote by S its common value. For each simple reflection
s € Wa\Wg, we have an isomorphism Sy = S =D; = IP’k, and the degree map

uniquely extends to an isomorphism deg: P1c(S£’ ) = Z[p~'] (see [3, Lemma 3.5]);
further Pic(Sy) = Pic(SP") = 0if s € Wg, since Sy = S, = Spec(k) in that case.

Lemma 4.8 There is an isomorphism

Pic(sh) — @ ZIp™"1, L (deg(Llgn)s (4.8)
N
where the sum runs over all s € {s1, ..., sq} with s ¢ Wg. Further, the pullback map

Pic(gw) — Pic(ng) is injective, and its image is a Z-lattice.

Proof The argument in [35, Proposition 3.9] applied to f: Dy — §w traEslates
verbatim, and we sketch it for the reader’s convenience. The pullback map Pic(S,,) —
Pic(D,;) is injective using the projection formula and the relation f,Op, = O3, from
(4.5). Under the isomorphism Pic(Dy) = 74 from Lemma 4.7, in the i-th component,
foralli =1,...,d, the map is given by L — deg(Lls, ) if 5; ¢ Wg and £ — 0

else. (Note that if s < w and i5: D; — Dy covers ig: SS — Sw, then the map

PlC(Sw) — Pic(Dy;, ) —> P1C(D ) factors as PlC(Sw) 5 PlC(SY) — Pic(D;), hence is
zero if s € Wg.) For any qcgs IF,-scheme X one has PlC(pr) = PlC(X)[p_l] by [3,
Lemma 3.5]. So, passing to perfections implies injectivity of (4.8) and that Pic(S,)
defines a Z-lattice in Pic(SB,f).

To prove surjectivity of (4.8), let (Ay) € GBSZ[p’l] C Z[p’l]d. This induces a line
bundle D = D(As) on Dgf. It suffices to show that D is trivial along the fibers of f pf
for once we know this D descends to SEJf by v-descent for vector bundles on perfect
varieties [3, Theorem 6.13]. First, we factor f Pf ag partial Demazure resolutions having
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fibers of dimension at most 1 as in the proof of Lemma 4.5. By induction we may and
do replace fPf by a corresponding map gP': SffiSEf — Sg,f with w = sv being a
reduced expression. Also, by the proof of Lemma 4.5 the map gP! has non-trivial fibers
exactly over the union of all SEf, with ¥ < v such that su < u. So, we restrict our
attention to the fibers of the map hPt Sf 5 S,Bf — S,Bf. By induction on w, we know
that Pic(SSf) is a free Z[1/p]-module generated on its LT Z-stable projective lines.
Following the argument in Lemma 4.7, the same assertion holds for Pic(SP f>~<S,5’f).
In particular, we see that the restriction of D to ng >~<S,l;f is the pullback of some line
bundle £ on SEf along hPf. Hence, it is trivial along the fibers. O

As perfections preserve closed immersions [4, Lemma 3.4 (viii)], there is a strict
k-ind-scheme

FeY = colim SY (4.9)

lying over ﬁg = colim S,, from (4.3). Their Picard groups are defined as the limit of
the Picard groups of the respective Schubert varieties.

Corollary 4.9 There is an isomorphism

Pic(FLy™) =N Pzip™"1. £ (degL| s1))s (4.10)

where .7-"(% denotes the neutral component and the sum runs over all simple reflections
s € War\Wg. The pullback map Pic(]-A"Zg) — Pic(}"ﬁg) is injective.

Proof This isimmediate from Lemma4.8: For v < w in Wy with large enough length,
the pullback map Pic(SE) — Pic(SP") is an isomorphism, which is the identity map
under (4.8). O

4.1.3 The central charge

We assume in this subsection (for simplicity) that G is almost simple and simply
connected, compare with Remark 4.6. In particular, the affine flag variety Feg is
connected.

The quotient LYG — Gy induces maps F¢g = LG/LTG — [Speck/LTG] —
[Spec k/Gi] to the respective quotient stacks. Passing to Picard groups we obtain

X*(Gr) = X*(L1TG) — Pic(Flg) 4.11)
Here, the first isomorphism holds because the kernel of LTG — Gy is pro-unipotent.
The Picard groups of the quotient stacks are the respective character groups because

giving aline bundle on such a stack is the same as giving a 1-dimensional representation
of the group, that is, a character.
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Lemma 4.10 The group Pic(ILG\Fg]) of isomorphism classes of line bundles on
FLg equipped with an LG -equivariant structure naturally identifies with X*(Gy) via
the induction map

w— L) :=LG x""90,, (4.12)

where O, is the equivariant line bundle on L*G attached to .

Proof This is immediate from the isomorphisms in (4.11): the inverse to the induction
map is given by pullback of L G-equivariant line bundles to the origin of ¢, noticing
that they carry an action of LTG, thatis, [L G\Fg] = [Speck/ LTG]interms of (étale)
stacks. O

We now pass to perfections in order to make the map (4.11) explicit, compare
Corollary 4.9. So choosing any presentation of LG by affine schemes, we denote
by LGP the colimit of the perfections of the constituents. As k is perfect, we can
equivalently use the relative Frobenius over k to form LGP', so it is naturally an
ind-affine k-group ind-scheme.

After perfection, we deduce from Lemma 4.10 and Eq.4.11 the homomorphism

X*(Golp™"1 — Pic(FEY), (4.13)

whose image identifies with the line bundles admitting an L GP!-equivariant structure.
In order to explicitly describe (4.13), we fix the standard basis¢; = (0,...,1,...,0)
of Pic(}'Zpr) = @,Z[p~ '] (see Corollary 4.9 for G = 7 being the Iwahori). It will be
convenient for us to fix a certain enumeration of the simple reflections.

Lemma 4.11 There exists a simple reflection sy such that the unique standard maximal
parahoric Gowithsg ¢ W, satisfies the following: the reductive quotient of the special
fiber Go i is simply connected and its root system equals the non-multipliable roots of
Dg.

Proof For any positive simple affine root o in the affine root system W in the sense of
[42, Definition 4.3.4] associated with a simple reflection s, let a; € ® be the gradient
of ;. For any enumeration sy, . . ., s, of the simple reflections, we write a; := ay,; for
i =0,...,n. We claim that there exists a choice of enumeration such that the a; for
i > 0 form a basis of ®", the sub-root system of non-multipliable roots. In order to
see that this is possible, we consider the folowing cases: either ®¢ is reduced, and this
amounts to the choice of a special vertex in the fundamental alcove not fixed by sg; or
® is not reduced, and we need to ensure the existence of special vertices which are
not extra special in the sense of [42, Proposition 1.5.39], which can be verified in [42,
Table 1.5.51]. From now on, we fix such an enumeration and claim that the standard
maximal parahoric Gy attached to s satisfies the conditions in the lemma.

In what follows, we canonically identify the character and cocharacter groups of
the K -split torus S with those of the special fiber S of its connected Néron O-model
S. Note that Sk defines a maximal split torus of the reductive quotient of G i, because

@ Springer



Singularities of local models

k is algebraically closed. By construction, the a; for i > 0 define roots of the reductive
quotient of G . In particular, the coroots a;” for i > 0 (which are non-divisible) form
a basis of the dual root system @ and hence of X, (S) by our assumption on G. O

From now on, we fix an enumeration sy, s1, ..., s, of the simple reflections with sg
being as in Lemma 4.11. With our numbering system above in terms of our choice
of special vertex, this has the following explicit description: for i > 0, a; is the non-
multipliable relative root whose reflection is s;, and ag is the negative of the highest
multipliable relative root.

Lemma4.12 Let al-v € X« (S) be the coroot associated to the root a; as defined above.
Under the isomorphism (4.10), the map (4.13) is given by

pe ) e we, (4.14)

where the sum runs over all i =0, ..., n with s; ¢ Wg. Thus, (4.13) is injective and
has cokernel free over Z[p~'] of rank 1.

Proof Let P; be the minimal standard parahoric such that L*P;/L*Z = S,,. The
reductive quotient of the special fiber of P; has simply connected cover isomorphic
to SL, with positive coroot a,’. Therefore, the pullback to Sfif of the equivariant line
bundle £ (1) attached to a weight i € X*(S)[p~'1 = X*(Zx)[p~'] is isomorphic to
O({a;”, ), hence (4.14) holds. It is well-known from the theory of algebraic groups
that X*(Gy) is adirect summand of X *(S), compare with [14, Corollary A.2.7]. Hence,
to deduce injectivity of (4.13) and freeness of its cokernel, we may and do assume that
G = T is the Iwahori. Due to the fact that S; identifies with a maximal torus in the
reductive quotient of Gy i, which is simply connected with roots d%m, the coroots aiv
for i > 0 form a basis of X.(S). So its dual basis w; form a basis of X*(S), and thus
(4.14) admits a section. Finally, to see that the cokernel has rank 1 for arbitrary G, we
proceed as follows. First, we notice that for any i = 0, ..., n, the set a; for j # i
forms a basis of X*(S)q, because otherwise the affine reflections s; for j # i would
have a positive-dimensional intersection in .27 (G, S). Suppose W contains exactly
m < n + 1 many simple reflections and notice that the associated relative roots are
still linearly independent in X (S)g by our previous observation. Let Sger denote the
maximal torus of the derived subgroup of g,ged and notice that X* (S,fer) has rank m.
We deduce that the cokernel X*(Gy)q of X* (S,fer)@ — X*(S)qg has rank n — m,

whereas Pic(}"ﬁgf) has rank n + 1 — m by Eq.4.10. O

Using that (4.13) is injective and has free cokernel of rank 1 (see Lemma 4.12), we
construct a homomorphism

Pic(}‘egf) = ZIp™", L+ cr, (4.15)

called the central charge homomorphism, uniquely characterized by the following
properties: its kernel is X*(Gy)[ p~ 11 it factors through Pic(]-"ﬁgf) — Pic(]—'é%f); for
G = 7 the standard Z-lattice ®,7Z C ®,Z[p~'] = Pic(]-"ﬁ%t) (see Corollary 4.9) maps
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onto Z C Z[p~'], preserving positive degrees. Please note that this map is just the
Z[p~']-linearization of the usual central charge as defined in [72, Eq. (2.2.3)]. The
only reason we defined it in the perfect setting is because we have not yet proved The-
orem 4.1, so we do not control the Picard group of the g, but only of its perfection.
We remark that the homomorphism (4.15) is surjective when G = 7 is the Iwahori,
but usually not for general parahorics, see [72, Sect. 2.2, page 12].

Lemma4.13 Let w; € X*(S) fori = 1,...,n be the dual basis to al.v. Under the
isomorphism (4.10), the map (4.15) is given by

(hi) > ho — Y _lag, @ik, (4.16)
i>0
where we use the convention that A; = 0 whenever s; € Wg. In particular, the

coefficients 1 and —(ag , w;) are the numbers attached in [41, Sect. 6.1] to the vertices
of the dual affine Dynkin diagram of G.

Proof The proof of Lemma 4.12 shows that £(w;) is the image of (aov , Wi )€g+€; under
the bijection (4.10). Hence, we get c(¢;) = —(ag, w;i)c(€g). So c(BsZ) C Zc(ep) and
by our choice of normalization c(ep) = 1, thus c(€;) = —(ag ,wi) fori > 0.

Finally, for the comparison with Kac—Moody theory, this can be seen by inspect-
ing [41, Theorem 4.8, Tables Aff 1-3] or the construction of the central charge for
untwisted and twisted Kac—Moody algebras, see [41, Theorems 7.4 and 8.3]. Alterna-
tively, we may observe that these coefficients are combinatorial data that do not really
depend on the arithmetic properties of G, so we may assume the latter to be tamely
ramified, in which case Fg identifies with a Kac-Moody flag variety, see [55, 9.h
and Proposition 10.1] and also [49, Annexe A]. O

Recall that for G = GL, we have an ample line bundle L4er = O(1) on FgL,
such that ¢(Lg4er) = 1. Pulling it back along the adjoint representation ad: Ftg —
FEGLLicG)> We get an ample line bundle £,q on F¢g whose central charge can still be
determined:

Lemma 4.14 The central charge c(Laq) of the adjoint line bundle is equal to 2h”,
where hY is the dual Coxeter number of the split form of G.

Proof We invoke [72, Lemma 4.2] at Iwahori level, which shows that £,4 has degree
2 when restricted to every Sj;, and which does not use any tameness assumptions. But
it is well-known that the sum 1 — > (w;, ag ) equals the dual Coxeter number. For
general parahoric level, there is a reduction step in the remaining paragraphs of the
proof of [72, Proposition 4.1] that follow the Iwahori lemma cited above. O

A key property of (4.15) is its constancy along the fibers of Beilinson-Drinfeld
Grassmannians, and we extend the results [37, Lemma 18, Remark 19] and [72,
Proposition 4.1, Corollary 4.3] from tamely ramified groups to general reductive
groups as follows. Let Grg — Spec(O) be the Beilinson—Drinfeld Grassmannian,
see [64, Definition 2.3] and [65, Sect. 0.3] for a definition independent of auxiliary
choices. Then Grg — Spec(0) is an ind-projective ind-scheme, its generic fiber
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Grg i is equivariantly isomorphic to the affine Grassmannian Grg formed using an
additional formal parameter [65, Sect. 0.2], whereas its special fiber Grg ; is equal
to F¢g. Looking ahead to the proof of Lemma 4.15 below, we note that the line bun-
dle £,q4 above extends to a line bundle on Grg, by the same construction (use [64,
§2.5]); we denote the extension also by L,q. By our assumptions on the group, we can
write G = Resz /g Go for some finite, separable field extension L/K and some abso-
lutely almost simple, simply connected reductive L-group Go. Given a scheme X, let
Pic(X)q denote the rationalized Picard group of X. For an ind-scheme X, we define
Pic(X)q as the limit of the Pic(X;)g along a presentation (in all cases considered in
this paper, this will match the Q-localization of Pic(X)).

Lemma 4.15 The following properties hold:

(1) The map Pic(Grg)g — Pic(Flg)q is surjective.
(2) Every L € Pic(Grg)qg has geometric generic fiber isomorphic to O(cg,), the
cg,-th tensor power of W1.x1O(1) on Grg g = []1.x) Crg, &

Proof There is a natural map Grg — [Speck/Gi] to the classifying stack of G-
bundles over k, given by forgetting the modification and then restricting the torsor
to the subscheme defined by the principal ideal ¢. This map factors the map F¢g —
[Spec k/Gk] (compare Eq.4.11) under the identification Grg = Flg. Passing to
Picard groups, we get maps X*(Gy) — Pic(Grg) — Pic(FLg) whose composition
is (4.11). After rationalizations, the maps are injective. Further, £,q and ker(c)g =
X*(Gr)q generate the Q-vector space Pic(F£g)q by Corollary 4.9. This shows (1).

For (2), we start by noticing that its conclusion is satisfied by the image of
X*(Gr)g — Pic(Grg)g. Indeed, the map Grg g — [Spec k/Gy] factors through
the trivial torsor by Beauville-Laszlo gluing, so it must induce the zero map on the
rationalized Picard group. Moreover, the conclusion holds as well for £,q defined over
Grg again by pulling back Lget along the adjoint map to the Lie algebra. Indeed, on the
geometric generic fiber Grg; g = [],.x) Grg, g theline bundle L£,q becomes isomor-
phic to O(2h"), where k" is the dual Coxeter number of G, by Lemma 4.14 applied
to each of the factors Go. On the special fiber 7, we also know by Lemma 4.14 that
Cr,g =2hY.

Since the previous explicitly given rationalized line bundles generate Pic(F¢g)q
as seen already, we may and do assume that our abstract rationalized line bundle £
on Grg has trivial special fiber £; = O. Let  be a conjugacy class of cocharacters
in G with reflex field £ > K. Let Mg, be the orbit closure of S , over O, see
Definition 5.1, and suppose that u is supported on exactly one almost simple factor
of G. Then, PiC(SG,;L,I?)Q is 1-dimensional by Lemma 4.8. Assume for the sake of
contradiction that L is anti-ample on S;; , ¢ (if not, take its inverse). It is therefore

equal to the restriction of /.qu for some ¢ € Q9. Replacing L by its product with

Ead, we may now ensure that ﬁk isample and L is trivial on Gr. Wi This contradicts
openness of the ample locus of £ on Mg ,, see [25, Corollaire 9.6.4]. In particular,
we conclude that £z must be trivial on S WE- Letting u run over all coweights with
irreducible support, we deduce from Corollary 4.9 that £ is trivial. O
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Suppose we are given a map f: G; — G, of parahoric O-models of simply con-
nected, almost simple K -groups G| and G;. We have an induced pull-back map

£*+ Pic(F1h ) — Pic(F1h) 4.17)

that sends equivariant line bundles with respect to LG];f to those with respect to LG‘ff.
In particular, we get a homomorphism of cokernels defined by their central charges
and it follows that ¢ (f*£) = d(f)c2(L) where d(f) € Zxg is independent of £ and
c¢; denote the central charges of the respective Picard groups. Here, the non-negativity
of d(f) holds because pullback preserves semi-ampleness, and d(f) is an integer
because the map of Picard groups also exists on the non-perfected affine flag varieties.
From the constancy of the central charge we draw the following consequence:

Corollary 4.16 Let L/K be a finite separable extension and consider the natural map
f:G — Reso, 0, (G), (4.18)

extending the unit of adjunction for Resy g, where G is the associated parahoric
O -model of G, induced by the map B(G, K) — B(G,L). Thend(f) =[L : K].

Proof Thanks to Lemma 4.15, we can read off the integer d (f) from the map of affine
Grassmannians Grg — GrRes, /kGL after base changing to K. But then Res;, /kGL
splits over K asa product of [L : K]-many copies of Gg, so O(1) = X..x1O(1)
pulls back to O([L : K]) as desired. O

4.1.4 The Demazure variety is stably compatibly F-split

In order to finish the proof of Theorem 4.1, it remains to show that the assumption
of Lemma 4.5 holds, that is, the Demazure variety Dy, is stably compatibly F-split
with Dy for all v of colength 1 in w. By Remark 4.6, we may and do assume that G
is simply connected, absolutely almost simple and that G = 7 is the Iwahori group
scheme. Asin [55, Section 8] (for proving F'-splitness) and [11, Section 5] (for proving
stable F-splitness), we aim to apply the Mehta—Ramanathan splitting criterion, see
[4, Theorem 5.3.1] and [7, Proposition 1.3.11], to Dy;, together with its divisors D.
We need the following result for this.
Lemma 4.17 There exists a unique line bundle L, € Pic(ﬁg) such that Egﬁ >~ Lag.
Proof We first prove uniqueness. Note that f*: Pic(gw) — Pic(Dy) is injective as
f«f*L = L by the projection formula and by f,.Op, = O, , see (4.5) for the latter.
By Lemma 4.7, we see that Pic(gw) is torsion-free for all w € Wy and so is Pic(ﬁg).
Hence, the map 7 *: Pic(ﬁg) — Pic(]—'ﬁgf) is injective. In particular, £,q admits at
most one square root.

Next, we prove existence. Recall that £,q restricts to O(2) on every Sy, so it admits

a square root inside Pic(]-'Zpgf) of central charge equal to 4", see Corollary 4.9 and
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Lemma 4.14. There are inclusions of Z-lattices
Pic(Flg) C ®Z C @,ZLp~"] = Pic(FL}). (4.19)

(Note that the lattices are in fact equal, which only follows after finishing the proof of
Theorem 4.1.) The cokernel of the inclusion is p-power torsion. If there were no square
root L on Fg, then the element (1, ..., 1) € &,Z would be a non-trivial 2-torsion
point of the cokernel Pic(]fzg) / Pic(]’}zg), which yields a contradiction unless p = 2.
So, Lt exists for whenever p > 2. »

Now, let p = 2. Informally speaking, we aim to show that Pic(#£g) is large enough
as follows. Lemmas 4.10 and 4.12 implies that ker(c) N @, Z already lies in Pic(Fg).
Since c¢(1, ..., 1) = kY, itis enough to prove the inclusion

c(Pic(Feg)) D hVZ, (4.20)

where we recall the normalization of ¢ from (4.15). In order to verify (4.20), lete < 3
denote the degree of the smallest extension L/K whose Galois hull L/K splits G.
The flag variety of the corresponding Iwahori model G over O3 admits a line bundle
with central charge 1 by [20, Theorem 7]. By Corollary 4.16, we obtain the inclusion
e!lZ C c(Pic(Fg)). Looking at the classification of [6, Planches], we see that e!
always divides /", unless G = SUj,, 1| is an odd-dimensional unitary group.
Finally, if G = SU(V, gq) is a unitary group, where V is a L-vector space and
q: V — L is asemi-regular L-hermitian form, we follow the implicit argument that
had already been covered in [72, Lemma 8.3] for p > 2, but now for all primes.
Namely, in Lemma 4.18 below, we will consider the natural map of K -groups

SU(V,q) — SL(xV) 4.21)

where gV is V regarded as a K -vector space, and construct a certain non-degenerate
quadratic form r: ¢V — K such that the above map factors through SO(x V, r).
Notice this solves our problem of constructing a line bundle £ satisfying c(£) = 1,
since the determinant has a square root given by the Pfaffian, see [2, Sect. 4.2] and
especially [2, Sect. 4.2.16] when p = 2. O

The following lemma is used towards the end in the proof of Lemma 4.17.
Lemma4.18 Let L/K be a quadratic extension, V a L-vector spaceandq: V — L a
semi-regular L-hermitian form. There is a non-degenerate quadratic formr: gV —
K such that SU(V, q) lies inside SO(g V, r).

Proof If p > 2, this is a well-known result in the theory of L-sesquilinear and K-

bilinear forms, see [58, Sect. 1.2.2], so from now on we assume p = 2.
Decomposing into orthogonal summands, we may assume either

(V,q) =(L,x = N(x)) (4.22)
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is one-dimensional semi-regular, or
(V,q) = (L*, (x,y) = x0(y) + 0 (x)y) (4.23)

is a two-dimensional regular hermitian hyperbolic plane.
In the first case, taking

r=tr(Aq): (x1,x2) — x12 + x1x2 + N(k)x%, (4.24)

where tr(X) = 1, gives us a regular symmetric K -hyperbolic plane, as 1 —4N(A) =
1 # 0 as p = 2. As for the second case, the quadratic form

r=tr(Aq): (x1,x2, y1, y2) > X2y1 + X1y2 (4.25)

clearly decomposes into the orthogonal sum of two regular symmetric K -hyperbolic
planes. O

Remark 4.19 The construction of Lt on the seminormalized affine flag variety is
used in order to apply the Mehta—Ramanathan criterion. It would be interesting to find
a uniform proof for all G and p. Recall that [20, Theorem 7] provides a construction
for split G, which is extended in [49, Corollary 4.3.10] for tame G, using negative
loops groups that seem, however, not to exist for wildly ramified G. Also, the work
[55] refers to a construction in [23, Proposition 3.19] for G = GL,,, which we were
not able to generalize to other groups.

Now, we are ready to finish the proof of Theorem 4.1. Let f: Dy — §w be
the Demazure resolution, compare (4.5). The anti-canonical line bundle admits the
formula

a)l_)i =0@Dy) ® f*ﬁcrit (4.26)

by the argument of [7, Proposition 2.2.2], and the fact that L has degree 1 on every
projective line S;. To apply the Mehta—Ramanathan criterion, see [4, Theorem 5.3.1]
and [11, Proof of Theorem 5.8], we must produce a section of the (¢ — 1)-th power
of Lt (for some power g of p) avoiding the origin (i.e., the intersection of all the
divisors Dy). Note that L is an ample line bundle, because so is its square L£,q. We
deduce that any sufficiently large power of L is very ample on S,, and therefore
f *Czri_tl will be basepoint free for some sufficiently large power g > 0 of p.

4.1.5 Picard groups of seminormalized Schubert varieties

Using the already proven Theorem 4.1, we can actually upgrade the previous results
on Picard groups to seminormalized Schubert varieties.

Lemma 4.20 There is an isomorphism

Pic(Sy) — @ Z. L+ (deg(Lls,))s (4.27)
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where the sum runs over all s € {s1, ..., sq} withs ¢ Wg.

Proof Recall the notation f: Dy — §w for the Demazure resolution from (4.5)
and the computation of Pic(Dy;,) from Lemma 4.7. As explained in Lemma 4.8, the
pullback map Pic(gw) — P, Z is injective. For surjectivity, let (A;) € @&,Z and
denote by D = D(Ay) the corresponding line bundle on Dy;.

We show that £ := f,D is a line bundle, and that the canonical map f*£ — D
is an isomorphism. As in the proof of Lemma 4.5 we factor f into successive partial
Demazure resolutions, each having fibers of dimension at most 1. By induction we
replace f by one of those maps g: Sy xS, — S,. By the proof of Lemma 4.8,
we already know that the restriction of D to the fibers of g is trivial after passing
to perfections. By the proof of Lemma 4.5, we know that the fibers of g are either
Spec(k (x)) or ]P’,l( (x)* SO their Picard groups are torsion-free and D has trivial restriction
to all fibers of g. By Theorem 4.1, our varieties have rational singularities,1 so [47,
Theorem 12.1 (i)] applies to show that D is Zariski locally trivial on the base. Using
rational singularities again shows g, D is a line bundle, and that g*£ — D is an
isomorphism. O

Corollary 4.21 There is an isomorphism

Pic(Flg) —> @ Z. L+ (deg(Lls))s (4.28)

—~0 . .
where FLg denotes the neutral component and the sum runs over all simple reflections
s € War\Wg.

Proof This is immediate from Lemma 4.20, as Pic(S,,) is again independent of w for
sufficiently large lengths by (4.27). O

Lemma 4.20 admits the following slight generalization (see Proposition 4.23) which
is used in Sect. 5. We first need an elementary lemma:

Lemma 4.22 Finite unions of seminormalized Schubert varieties in Ftg are seminor-
mal and stable under finite intersections.

Proof Due to the compatible F-splitting of seminormalized Schubert varieties from
Theorem 4.1, their finite union (and, finite intersection) is again F-split, hence F-
injective (and reduced) and therefore seminormal by [67, Theorem 4.7]. In particular,
if Sy, Y Sw, C Ftg are Schubert varieties, then the maps U7_, Sy, — U, Sy,
and N}_, 8y, — N!_; Sy, are universal homeomorphisms and induce isomorphisms
on all residue fields, and so identify the respective sources as the seminormalizations
of their targets. The lemma follows. O

1 Strictly speaking, Theorem 4.1 only refers to the S, and not their partial Demazure resolutions, but the
proof given in the previous section proceeds by descent from D;, so those also have rational singularities.
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Proposition 4.23 Letwy, ..., w, € W be right Wg-minimal. There is an isomorphism
n ~
Pic <U Sw,> — @z L (deg(Lls))s (4.29)
i=1 K

where the sum runs over all s € W\Wg of length 1 such that s < w; for some
i=1,...,n.

Proof Without loss of generality, we may and do assume that (_J]_, §w,- is connected
L =0 . .

and contained in the neutral component 7. Next, we proceed by inductiononn > 1.

For n = 1, this is Lemma 4.20. For the induction step, let X = U;’;ll Sy; and Y = 8,

viewed as closed subschemes of ﬁg. The sequence of sheaves of abelian groups on
Fg

(a,b)—>ab™!
—

X X X X
I — ixuy +Oxy — tx.+O0x X 1y xOy txny «Oxny —> 1

(4.30)

is exact as is easily checked on stalks, where ¢(.) denotes the respective closed immer-
sion into Flg. Since X N Y is reduced (because seminormal) by Lemma 4.22,
we see HY(X N Y, Oxny) = k* by connectedness and projectivity of X N Y.
Hence, the long exact (Zariski) cohomology sequence associated with (4.30) iden-
tifies Pic(X UY) = H(X U Y, (’);UY) with Pic(X) Xpic(xny) Pic(Y). One easily
deduces (4.29) which finishes the induction step. ]

4.1.6 Vanishing of higher coherent cohomology of seminormalized Schubert
varieties

Another consequence of Theorem 4.1 is the following result, to be used in Sect.5
below:

Lemma 4.24 Let Wi, ..., Wy € War be right Wg-minimal, and consider X =
Ui=1Sw;- Then H/ (X, Ox) =0 forall j = 1.

Proof By Lemma 4.22 finite unions of seminormalized Schubert varieties are stable
under intersections. Hence, a Mayer—Vietoris argument similar to that in Proposi-
tion 4.23 reduces the claim to the case n = 1. Consider the Demazure resolution
f: Dy — §w from (4.5). Now, §w has rational singularities by Theorem 4.1, so
H/ (S,, 03,) = H/(Dy, Op,,) using Rf.Op, = O3, . Since Dy; is an iterated P}-
bundle, the vanishing of higher cohomology follows by a straightforward induction
argument. O

4.2 Normality of Schubert varieties

In this subsection, we extend the normality theorem for Schubert varieties to some
wildly ramified groups. Previously, this was proved by Faltings for split groups, see
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[20, Theorem 8], and by Pappas—Rapoport for Weil-restricted tame groups, see [55,
Theorem 8.4]. These results were inspired by similar ones in Kac—-Moody theory
found in [53], but we stress that wildly ramified groups are in principle unrelated to
that theory, compare with [49, Annexe A]. The prime-to-p hypothesis on the order of
71 (G ger) 18 essential, due to [32, Theorem 2.5].

Theorem 4.25 Under Hypothesis 2.1, all Schubert varieties S, are normal if and only
if p does not divide the order of 71 (G der).

We need the following auxiliary lemma:

Lemma4.26 If G is simply connected and satisfies Hypothesis 2.1, then Flg is
reduced.

Proof This is proven in [55, Proposition 9.9] for tamely ramified groups and extends
to wildly ramified groups under Hypothesis 2.1. We recall the proof for convenience,
following closely [55, Proposition 9.9].

By [32, Lemma 8.6], it is enough to show that every R-valued point x of F¢g, with
R being Artinian and strictly Henselian, factors through the reduced locus. By the
Bruhat decomposition and formal smoothness of LTG, we can translate x such that it
is supported at the origin e € Fg (k). After extending scalars, we may assume that
the residue field of R equals k. Moreover, we can use formal smoothness of LG and
the fact that R is strictly Henselian to lift x to an R-valued point x of LG supported at
the identity. This corresponds to an R((¢))-valued point of G supported at the identity,
so it factors through the big cell C = U~ x T x U™. We claim that ¥ is in the
subgroup generated by LU (R). Since the ind-schemes LU? are reduced, they map
to (FLg)rea- Hence, we may and do assume that X € LT. But T factors as a product
of induced tori indexed by its relative coroots, and thus we can further reduce to the
case when G has rank 1. Supressing the wildly ramified restrictions of scalars, then
either G = SL, or SU3 and p # 2 and the needed generation property is explicitly
calculated in the proof of [55, Proposition 9.3]. So x lies in the reduced locus, and the
lemma follows. O

Proof of Theorem 4.25 The seminormalization S, — Sy, is proper and surjective,
hence an isomorphism if and only if it is a monomorphism (as Sy, is reduced). So all
Schubert varieties S,, are seminormal (hence normal by Lemma 4.4) if and only if the
morphism of ind-schemes

]?Zg = colim S,, — colim S, = (Fg)rea C Hg 4.31)

is a monomorphism, or equivalently, its restriction to the neutral components is so.
Using this we prove the theorem as follows.

Forthe if clause, by [55, Sect. 6.a] we may and do assume that G is simply connected,
absolutely almost simple and G is an Iwahori model. In this case, we claim that (4.31)
is an isomorphism. Now observe that by Proposition 2.6, we can find a smooth affine
W (k)[[]]-group G with connected fibers lifting G, such that it becomes parahoric as
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well over Ko[[t] with Ko = W (k)[p~']. Hence, (4.31) lifts to a morphism of W (k)-
ind-schemes

Fig — Fg, (4.32)

where the left side is the ind-normalization of the right side. Indeed, that this commutes
with base change to k is a consequence of Theorem 4.1 thanks to the vanishing of higher
coherent cohomology of the Demazure resolution, by an application of cohomology
and base change, compare with [20, page 52] and [24, Proposition 3.13]. Over Ky,
we get an isomorphism by Kac—Moody theory, see [55, Sect. 9.f]. Integrally, we show
that the map is formally smooth around the origin, by virtue of an analogue of [20,
Lemma 10] or [55, Proposition 9.3]. This implies the claim by [20, page 53] or [55,
Sect. 9.¢g].

The only if part follows from the argument in [32, Sect. 2], because if p divides the
order of 71 (Gger) then the kernel of Gsc — G is not étale. Hence, the induced mor-
phism Fg  — .7-"5% C Fg is not a monomorphism, where G, denotes the parahoric
O-model of G induced by G. By Lemma 4.26, F{g_, is reduced, so (4.31) factors on

neutral components as ﬁog > Fg,. — (fﬁg)?ed.

phism, then Ftg_  — ]—'@g would be a monomorphism, which is a contradiction.
[m}

Now, if (4.31) were a monomor-

4.3 Central extensions of line bundles

In the theory of loop groups and their flag varieties, one is usually faced with the
obstacle that not every line bundle on F{g is LG-equivariant. However, this can
partially remedied by considering a certain universal central extension of LG that acts
on every line bundle of F¢g. This is a recurrent theme in Kac—-Moody theory, see [20,
page 541, [55, Remark 10.2] and [49, Corollary 4.3.11], and also admits an incarnation
for the Witt vector Grassmannian by [3, Proposition 10.3]. In order to properly explain
it, we need to use the geometric results of the previous subsections.

Given a line bundle £ on Fg, we form the group functor on the category of k-
algebras R defined by

LG{LY(R) = {(g,a)|g € LG(R), a: L = g*L). (4.33)

We can now prove the following lemma:

Lemma 4.27 Suppose G is an almost simple, simply connected K-group satisfying
Hypothesis 2.1. Then, the pre-sheaf LG{L} defines a central extension of LG by
G k in the category of ind-affine k-group ind-schemes. The association L +— LG{L}
induces a group homomorphism

Pic(Fg) — Exteent(LG, Gy k). (4.34)

with the same kernel as (4.15) restricted to Pic(Flg).
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Proof Note that LG{L}(R) carries a natural group structure via (g1, «1) - (g2, @2) =
(g182, g§a1 o a3), thus having G, x(R) = {(1,¢) | c € R*} as a central subgroup.
We claim moreover that G, x(R) C LG{L}(R) is the kernel of the natural projection
to LG (R). In other words, we claim that the automorphism group Aut(Lg) as a line
bundle on F¢g g equals R*. After tensoring with £~!, we may and do assume that
L = O. Thus, it suffices to show that H O(}—@g, k> O) = R which is implied by
Lemma 4.26.

Next, we study the action of LG (R) on the Picard groups. Note that Pic(Fg g) is
the direct sum of Pic(R) and Pic(F{g), since the Picard functor of the flag variety is
constant étale due to [43, Corollary 5.13] using Lemma 4.24. The action of LG (R) on
Pic(R) is trivial, and we claim that the same holds for the quotient Pic(F¢g r)/Pic(R).
By Theorem 4.25 and (4.28), that quotient is torsion-free and we may check triviality of
the LG (R)-action on generators of the associated Q-vector space. A set of generators
is given by L G-equivariant line bundles, see Lemma 4.10, and the adjoint line bundle.
For an LG-equivariant line bundle, the claim is trivial and we even see directly that
LG{L} — LG splits and thus is the trivial extension. For the adjoint line bundle, one
sees that the difference

L3} g* Lo = det¢ ™Rt /gRIN") € Pic(Flst, r) (4.35)

for a > 0 is in the image of Pic(R), compare [20, page 43], so the same remains true
after pulling back to Fg g.

We can use the previous paragraph to show that any R-valued point of LG lifts
along the map LG{L} — LG after we replace Spec R by a finite union of affine opens.
Indeed, we saw above that £ and g* L differ by an element of Pic(R) which can be
trivialized over an affine open Spec S C Spec R. Replacing R by S, we may assume
the existence of an isomorphism «: £ = g*L, thereby producing a lift in LG{L}(S).
Letting Spec R run over sufficiently small affine opens of a presentation of LG, the
existence of lifts shows that LG{L} is representable by an ind-affine k-group ind-
scheme and that it is an extension of LG by G, ;. Finally, it is clear that the kernel
of (4.34) consists of those £ that admit an LG-equivariant structure, hence coincides
with the kernel of (4.15) after restricting the latter to Pic(F¢g) thanks to Lemma 4.10.

]

The lemma implies that the image of (4.34) is a free Z-module of rank 1, see
Lemma 4.12. Identify the image with Z via the unique isomorphism sending ample
line bundles to positive integers.

Corollary 4.28 For any L € Pic(Flg) with ¢y = 1, the resulting central extension

G = LG{L} has the property that every line bundle on Flg admits a LG-
equivariant structure which is unique up to multiplication by k*.

Proof Using Lemma 4.10, the central charge induces a short exact sequence 0 —

Pic([LG\Fg]) — Pic(Fg) 5 7 — 0. The choice of £ provides a splitting. So the
corollary follows from the equality Aut(M) = k> for any line bundle M on F¢g, see
the proof of Lemma 4.27. O
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5 Local models

In this final section, let O be a complete discretely valued ring with fraction field K
and perfect residue field k of characteristic p > 0. Let G be a reductive K-group, i
a (not necessarily minuscule) geometric conjugacy class of cocharacters in G and G a
parahoric O-model of G. The reflex field E of u is a finite separable field extension
of K with ring of integers O and residue field k.

Let O be the completed strict Henselisation of O with fraction field K and alge-
braically closed residue field k. Let T be the centralizer of some maximal K- split
torus S which is defined over K and contains a maximal K -split torus with apartment
containing the facet associated with G, see [9, Corollaire 5.1.12]. The connected Néron
model 7 of T is a closed subgroup scheme of G.

5.1 Equicharacteristic local models

Assume K = k() is a Laurent series field with ring of integers O = k[[t]]. Let
us recall the definition of local models in equicharacteristic, which only depend
on the pair (G, u) and not on additional auxiliary choices. Recall that we have
defined the Beilinson—Drinfeld Grassmannian Grg — Spec O before Lemma 4.15. Its
generic fiber is equivariantly isomorphic to the affine Grassmannian Grg — Spec K
whereas its special fiber is equal to the affine flag variety 7¢g — Speck. Let
SG.u C Grg Xspec k Spec E be the Schubert variety attached to p.

Definition 5.1 Let Mg , denote the flat closure of S, inside the Beilinson—Drinfeld
Grassmannian Grg ¢, := Grg Xspec 0 Spec Og. We denote by Mg , its seminormal-
ization [70, OEUK].

Remark 5.2 The formation of orbit closures and their seminormalizations are functo-
rial in the following sense. A morphisms of pairs (G, n) — (G, 1) is amap of O-group
schemes G — G which maps p into 1 under the induced map of reductive K-groups
G — G in the generic fiber. Any such map of pairs induces a map Mg, — Mg’ﬂ

commuting over Spec O — Spec O where E denotes the reflex field of [ZN. By
functoriality of seminormalizations [70, Tag OEUS], we get a map Mg , — Mg i
commuting over the map of orbit closures.

In order to describe the special fiber of the schemes from Definition 5.1, we recall the
admissible locus [54, Sect. 4.3]. The Kottwitz homomorphism induces an isomorphism
X (T); = T(I% )/ T (6), A +— A(r) where the source denotes the coinvariants of the
cocharacter lattice X, (7") under the inertia subgroup / of the absolute Galois group
of K. Note that the isomorphism does not depend on the choice of uniformizer .

Definition 5.3 The admissible locus Ag,,, is the reduced kg-subscheme of Fg i,
given by the kg-descent of the union of k-Schubert varieties SX(:)’ where A € X, (T)
runs through the (finitely many) representatives of  and where A € X, (T); denotes
its image in the coinvariants under /. We denote by Zg’ u its seminormalization.

Note that Ag , does not depend on the choice of the maximal torus T as above.
Further, Ag , is geometrically connected and, by [29, Theorem 4.2], its irreducible
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k-components are the Schubert varieties S5y Where A runs through the K -rational
representatives of p in X, (7).

Let us now discuss finer geometric properties. It was shown in [31, Theorem 6.12]
that the reduced special fiber of Mg, coincides with Ag ,,, but we shall only need to use
the inclusion of Ag ,, in the reduced special fiber, already proved in [64, Lemma 3.12].
Note that (Ag Wi = UASW) by Lemma 4.22, where A ranges over the K -rational
representatives of u in X, (7). Since the F-split property for proper schemes can be
descended from k to kg, Ag u is F-split. It 1dent1ﬁes moreover with the admissible
locus Az ~ associated with any z-extension G of G with simply connected derived
group, and any lift it of u, by Theorem 4.25, at least when Hypothesis 2.1 holds.

Now, we may state our main result on the singularities of local models.

Theorem 5.4 Under Hypothesis 2.1, the local model ]\f/vlg’u is Cohen—Macaulay, has
F-rational singularities (and thus is pseudo-rational), and has reduced special fiber
equal to the seminormalized admissible locus Ag .

Proof The key step of the proof is showing that the special fiber is reduced and equal to
Avg, u from which the other properties follow by using the F-splitness of Zg’ w; in fact,
we shall prove that Mg , has F-rational singularities. This part of the proof essentially
follows from [72, Sect. 4.2], relying on Theorem 4.25 for wildly ramified groups. Here
is an outline. By using faithfully flat descent of F-rationality [15, Proposition A.5] we
may reduce to the case O = 0,50 G is quasi-split.

First, we show that for any finite field extension E 7/ E the base change Mg uw Q0%
Op is normal with reduced special fiber equal to Ag » as follows. Passage to the
adjoint group induces a map of pairs (G, ) — (Gad, ad) Where G,q is the parahoric
associated With Gag and f1,q is induced by p under G — Gaq. The corresponding map
Mg w = Mgd a.1aa ®0g,, OF 1s a universal homeomorphism inducing isomorphisms
on residue fields by [26, Corollary 2.3 and its proof], thus an isomorphism if the target
is (semi-)normal. Without loss of generality, we reduce to the case where G is adjoint.
A similar argument shows that the formation of Mg , commutes with products in
G, so we first assume that G is adjoint and simple, so G = Resy /g (Go) for a finite
separable field extension L/K (necessarily totally ramified) and an absolutely simple
L-group Gy.

The simply connected cover Ggc — G induces a universally closed and univer-
sally injective morphism ¢: Grg,, — Grg which gives on generic fibers the universal
homeomorphism Grg,, — Gr, onto the neutral component. We consider the trans-
late t;l Mg, C u«(Grg, o0.), where t, is an Og-valued point of L7 lifting the
corresponding section of Grz, and consider the unique reduced closed subscheme
Mg, .. C Grg, o, withthe topological space (Mg, , ) being the same as the transla-
tion. Likewise, we denote by Ag, , (respectively, Sg,, ) the t, -translated admissible
locus inside Feg, (respectively, Grg, ., g). These are also unions of translates of Schu-
bert varieties for some choice of Iwahori group scheme. The induced finite universal
homeomorphism Mg, — Mg, , factors on generic fibers as Sg. , = SG,u — SG,u
(hence is birational).

We will prove that for all n > 1, we have

dimg H(Ag,, . L&) = dimg H(Sg.u. L), (5.1)
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where L,q denotes the pullback of the determinant line bundle along the adjoint rep-
resentation, compare Lemma 4.14. But before we do so let us explain how it implies
that Mg . has special fiber equal to Ag u- By [64, Lemma 3.12], we have an inclusion
of Ag, . in the reduced special fiber of Mg, . Since L,q is a relatively ample line
bundle on Mg_ ,, (5.1) implies that the special fiber of Mg, , is reduced and equal
to Ag,. ... By Serre’s criterion (see [60, Proposition 9.2]) it follows that Mg_ ,, is
normal. Consequently, as the map Mg, , — Mg , induces an isomorphism on every
residue ﬁeld it identifies with the seminormalization, so induces an isomorphism
Mg, . = Mg u- Using the normality of Schubert varieties for simply connected
groups in Theorem 4.25 we then see that the special fiber of Mg wis Ag “-

It remains to prove (5.1). For this, consider the W (k) [[¢]]-lift Gy of G provided by
Proposition 2.6 under our Hypothesis 2.1, which holds for ®¢_ . Consider the affine
flag scheme Ftg  over W (k). It admits the flat, closed subscheme Ag , whose

generic fiber is Ag/ w Wwith g = gsc ® Ko[[t] and i’ corresponding to w using
(2.11), and whose spemal fiber contains Ag,, ,. As explained in the last paragraph of
the proof of [49, Théoreme 5.2.1], one deduces from the combinatorics of Schubert
varieties and their compatible F-splitness an equality

dime H(Ag,, ., L5 = dimg, H'(Ag,,, v, LZ]), (5.2)

for all n > 1. Note that (5.2) uses again the normality of Iwahori Schubert varieties
for simply connected groups (Theorem 4.25) to deduce their F-splitness (Theo-
rem 4.1). Likewise, the analogue of (5.2) also holds for S, , versus S(;/SC, w Wwith
Gl. = Gi. ® Ko(?). Appealing now to the coherence theorem of [72] for the group
G/ in characteristic 0 (those are always tamely ramified) finishes the proof of (5.1).
Thus, Mg’ «« 1s normal and has reduced special fiber which is equal to /Tg, w» and the
same holds for the base change Mg , ® o, Of by an application of Serre’s criterion
as the generic fiber is geometrically normal.

Since, as noted above, the formation of ]VIQ) x commutes with products in ~G, it
follows that for general G the special fiber of Mg , is reduced and is equal to Ag ,.
We now prove the other parts of the theorem by using results from the theory of
F-singularities, see Sect.3. Since :S’JG, Wk = S;CM i 1s an Iwahori Schubert variety

for the simply connected, split reductive group G g, it is Cohen-Macaulay and
even F-rational by [11, Theorem 1.4]. (Alternatively, these properties of §G’ K also

follow directly from Theorem 4.1.) Hence, so is §G, by faithfully flat descent of [15,
Proposition A.5]. We already know that Zg, u 18 F-split by Theorem 4.1, so it is F-
injective in particular. We also note that all rings and schemes involved in our argument
are F'-finite since k is algebraically closed. Then Lemma 3.2 implies that Ah/ig, wis F-
rational, so pseudo-rational by Lemma 3.4 and in particular Cohen—Macaulay. O

Remark 5.5 There is an equality Aﬁ/fg,ﬂ = Mg, if and only if ‘Zg,u = Ag,, and
SG,u = Sc,u- This is ensured, for instance, when p t |[71(Gder)|. If p | |71 (Gaer)l,
then the equality still holds when & € X.(T); is minuscule with respect to the
échelonnage roots and the closure of f contains a special vertex; see the proof of [32,
Proposition 9.1]. Otherwise the equality is false for infinitely many values of u, see
[32, Corollary 9.2].
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Remark 5.6 Cass has proved somewhat stronger properties of the singularities of Mg, P
when the group G is a constant split reductive group and p > 2, see [10, Theorem 1.6].

Remark 5.7 There is an alternative proof for the reducedness of the special fiber of
Mg ,, via perfectoid geometry, see [22, Lemma 1.2, Theorem 1.3], without the need
for Hypothesis 2.1. We stress that it does not directly imply that the special fiber
is seminormal and F-split as in Theorem 5.4, upon which the last sentence of [22,
Corollary 1.4] actually relies. On the other hand, combining the results of [22] with
Theorem 4.25 immediately yields an identification between A ... and the special fiber
of Mg ,,, compare with the proof of [22, Theorem 2.1] or the discussion surrounding
[1, Conjecture 7.25].

We can also deduce the following facts on the Picard group of the local models.

Corollary 5.8 Under Hypothesis 2.1, the following properties hold:

(1) The restriction map Pic(Mdg, ) = Pic(gg, ) IS an isomorphism.

(2) Let G; fori = 1,...,m be an enumeration of the simple factors of Gaq such
that the image [1; of w in the group X .(T;)| attached to G; is non-zero. Then the
restriction map

[ [Pic(Feg,) — Pic(Ag,,) (5.3)
i=l

is an isomorphism, where G; is the associated parahoric O-model of G; and the
superscript T; indicates the connected component attached to [4;.
(3) There is a commutative diagram:

Pic(Mg.,.) > Pic(SG.,)
Pic(Ag.,,) ", Pic(SG,.)) 54
~ [TL, deg;
[T PioFEg) e 3

where the maps of Picard groups are induced by functoriality, deg; denotes the
degree homomorphism, and the c; are the central charge homomorphisms for
Fg, .. translated to the respective connected components.

Proof By Theorem 5.4, the special fiber of Mg u 18 equal to Zg o = U;L:Sv';h(,), see

Definition 5.3. For (1), it is enough to prove that every line bundle on Ag w lifts
uniquely to Mg w» Or equivalently to the formal scheme Mg P xspec(oE) Spf(Ok)
by Grothendieck’s formal GAGA. Since H/ (Ag,;u OAg,L) = 0for j = 1,2 by
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Lemma 4.24, obstruction theory (compare [43, Proposition 5.19]) shows the existence
and uniqueness of such lifts.

For (2), we may and do assume that k is algebraically closed by étale descent. We
use Proposmon 4.23 which calculates Plc(Ag ) as @Z where the sum runs over
alls € W \ Wg with [(s) = 1 and s < A(¢) for some rational representative A of
w in X (T). In order to finish the proof of the second part, we may and do assume
that G is simple and p is non-zero. We have to show that the map Pic(]—'ﬂr‘) —
Plc(Ag 1) 1s an isomorphism where 7, denotes the unique length 0 element in the
admissible set Adm(u) C W.Itis enough to show that every simple reflections € Wye
appears in 7, TAdm(p), see Corollary 4.21. Assume the contrary. Then the subgroup
generated by the simple reflections which do appear is a finite Coxeter group, say,
W’ containing T, TAdm(p). Therefore, W’ (hence T, 'Adm(u)) contains at most one
representative for each coset in the finite Weyl group Wy = War/ X, (Tyc);: if there
were two representatives, their difference would be a non-trivial translation, so W’
would not be finite. However, this contradicts the fact that Adm(u) contains always
at least two different translations #; and t,,(z) because i1 # 0.

Part (3) is verified as follows. Since the groups involved are all torsion-free, we only
need to check commutativity after tensoring with Q. But then Lemma 4.15 applied to
each of the simple factors provides rationalized line bundles on A’/vlg, « Whose generic
fiber is given by O(cg, ), exactly as claimed. O

Recall that Pappas—Rapoport’s coherence conjecture in [55], as corrected by Zhu
in [72], gives an equality of dimensions of certain cohomology groups, which we can
now formulate and prove in greater generality.

Corollary 5.9 Let L be an ample line bundle on Zg,w Under Hypothesis 2.1, there is
an equality

dimy H(Ag .. £) = dimg H'(Sg , g. Olcr)). (5.5)

where O(cr) := K;O(c; (L)) and the c; are the central charge homomorphisms of
the simple factors of G4, compare with Corollary 5.8.

Proof Note that given a flat proper scheme X over a discrete valuation ring with F-split
special fiber, and an ample line bundle £ on X, the dimension of the global sections
of £ on X, and X, agree by the vanishing of higher cohomology (and constancy of
the Euler characteristic). Therefore, the statement follows directly from Theorem 4.1,
Theorem 5.4, and Corollary 5.8. Indeed, by Corollary 5.8 (1), £ lifts uniquely to
an ample line bundle over An/fg, » With geometric generic fiber equal to O(cy) by
Corollary 5.8 (3) (note that the integers c; (L) are well defined by Corollary 5.8 (2)).

O

5.2 Mixed characteristic

In this subsection, we assume K /Q, is of characteristic 0, and fix a uniformizer 7 € K.
Further, G is assumed to be adjoint, quasi-split and to satisfy adjoint, quasi-split and to
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satisfy Hypothesis 2.1. Then G is a product of K-simple groups compatibly with the
tori S C T, and we fix the data in (2.1) for each factor. The resulting O[[#]]-group lift
g of its parahoric model G is defined as the product of the lifts from Proposition 2.8
of each simple factor. We denote G’ := G ® k[[¢]].

Let us recall the basic properties of the Beilinson—Drinfeld Grassmannian Grg —
Spec O, where the power series variable is z = t — w, compare with [60, Sect. 6].

Proposition 5.10 The O-functor Grg is representable by anind-projective ind-scheme.
Its generic fiber is isomorphic to Grg, whereas the special fiber is identified with Fl g

Proof Representability by an ind-quasi-projective ind-scheme follows from [60,
Proposition 11.7], thanks to Proposition 2.6. Its special fiber is the affine flag vari-
ety associated to the k[[#]-group scheme G’, that is, Grg , = Flg. As for the generic
fiber, we have to find and choose an identification between G®K[zland G ® K[ z]l.
But the former group scheme is reductive, so such an isomorphism exists by [65,
Lemma 0.2], which says that every reductive group scheme over K[[z] is constant.
Finally, we show projectivity by the same argument of [60, Proposition 6.5]: it is
enough to verify the valuative criterion for Grz. Since 7 is a product of restrictions
of scalars of the multiplicative group along maps of the smooth O-curves in (2.18),
this is a consequence of [30, Corollary 3.6, Lemma 3.8]. O

Just as in [60, Sect. 7], we introduce local models in mixed characteristic.

Definition 5.11 Let Mg , denote the flat closure of Sg, inside Grg o, . We denote
by 1\719, . its seminormalization.

The reader is referred to Remark 5.18 for the extension to not necessarily adjoint
groups and to Lemma 5.23 for the relation to the (modified) local models from [36,
Sect. 2.6]. In the following paragraphs, we single out some important properties of
the local models.

Lemma5.12 The reduced special fiber of Mg, contains the ' -admissible locus
Ag v in equicharacteristic, where ' is the corresponding dominant absolute
coweight of G'.

Proof The proof is the same as the proof of [64, Lemma 3.12]. This depends on [64,
Lemma2.21] which is formulated in an equicharacteristic setting, but the proof extends
to the mixed characteristic setting using that 7 is induced. O

Remark 5.13 Since our group lifts seldom coincide with the corresponding construc-
tions of [46], we do not know how to compare our Mg , and Ah/ig, u With the local
models from [46], when u is non-minuscule. However, our arguments and results
below still hold for both objects. For minuscule w, both constructions do coincide by
[1, Sect. 7].

Now, we may state our main result on the singularities of local models.

Theorem 5.14 Under Hypothesis 2.1, the local model MQ, u is Cohen—Macaulay, and

has a reduced special fiber equal to Zgr, w- If the admissible locus is irreducible, then
Mg, has pseudo-rational singularities.
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Proof As inthe proof of Theorem 5.4, we reduce to the case O = 0,G simple and note
that Mg ,, has a finite, birational, universally homeomorphic cover Mg, ,, isomorphic
to a subscheme of the Grassmannian Grg,, associated to the simply connected cover
Gsc = G. In particular, by Theorem 4.25, its generic fiber is isomorphic to Sg,, =
S G, (Schubert varieties in characteristic O are normal) and by Lemma 5.12 the special
fiber contains Ag/’ .

Let L4 be the line bundle on Grg,, given by pullback of the determinant line bundle
under the adjoint representation. Its restriction to Mg, , is ample, by Lemma 5.10.
By (5.1), we get an equality

dimyg HO(Ag,_ v, LE) = dimg HO(Sg, 0 L. (5.6)

This implies that ]l’\/ig, w is normal and its special fiber is reduced and equal to A~g/) W
compare with the proof of Theorem 5.4. The Cohen-Macaulayness follows from
ﬂatness and that of Ag/ w proven in Theorem 5.4, see [26, Lemma 5.7]. Moreover, if
Ag/ W= Sg/ + is irreducible, then it has F-rational singularities by Theorem 4.1, so
pseudo- ratlonahty follows by Lemma 3.5. O

Remark 5.15 Again, there is an equality MQ,M = Mg, if and only if A‘g/,ﬂ/ =Ag .
(Note that §G, = Sg,u because Schubert varieties in characteristic 0 are normal.)

This is ensured, for instance, when p 1 |71 (G)|, and may otherwise very well fail, see
[32, Corollary 9.2].

Remark 5.16 We note that, for ; minuscule, the Gx-scheme Zgg w 1s related to the
Witt vector affine Grassmannian of G, see [1, Sect. 3].

Remark 5.17 If G is special parahoric, then the admissible locus is irreducible, so
JVIQ, 1 has (pseudo-)rational singularities. For a complete list of triples (G, , G) with
G absolutely simple and o minuscule such that the associated admissible locus is
irreducible, the reader is referred to [36, Theorem 7.1 (1)].

Remark 5.18 The local models constructed in [1] are invariant under passing to the
adjoint group. So, if G is not necessarily adjoint, we may define following [30,
Sect. 7.1] the local model as M@y 1taa ®0k,, OFf where (1,4 is induced by w under
G — Gy and E,q C E denotes its reflex field. Then Theorem 5.14 holds for this
more general definition: this is clear if £/ E,q is unramified, and else follows from the
method of proof.

We also get a complete description of the Picard group of the local model in mixed
characteristic.

Corollary 5.19 Under Hypothesis 2.1, the following properties hold:
(1) The restriction map Pic([\ﬁ/ig)ﬂ) — Pic(gg/,u/) is an isomorphism.

(2) Let Gjfori =1, ..., m be an enumeration of the simple factors of G such that the
image i; of w in the group X« (T;) attached to G; is non-zero. Then the restriction
map

m
[ [Pic(Ftg) — Pic(Ag ) (5.7)

i=1
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is an isomorphism, where G! is the associated parahoric k([t]]-model of G and
the superscript t; indicates the connected component attached to ;.
(3) There is a commutative diagram:

Pic(#g.,,) » Pic(S6,.)
Pic(Ag: ) ", Pic(SG,.) (58
~ [TL, deg;
TT, Pic(Fig) iz Ny

where the maps of Picard groups are induced by functoriality, deg; denotes the
degree homomorphism, and the c; are the central charge homomorphisms for
Flg translated to the other components.

Proof The proof is the same as in Corollary 5.8, and we briefly explain the necessary
changes. For (1), we use Theorem 5.14 to know that Avg/, w €quals the special fiber of
Mg ,,. The structure sheaf has vanishing higher cohomology by Lemma 4.24, so line
bundles lift uniquely.

Part (2) follows directly from Corollary 5.8 (2).

For (3), we need to produce enough line bundles on the mixed characteristic local
model Mg’ u»compare the proof of Lemma4.15. We have already seen how to construct
the adjoint line bundle during Theorem 5.14. As for the kernel of the central charge,
we define amap Grg — [Spec O/G,_] by reducing torsors to the subscheme defined
by the principal ideal 7, where G,_, denotes the reduction of the O[[z]l-group scheme
G to O viat +— 0. Pulling back line bundles of [Spec O/g,_] to IVIQ,M yields the
desired lifts of ker ¢ with trivial generic fiber. O

In the equicharacteristic case, we have seen in Theorem 5.4 that local models have
rational singularities. Together with Theorem 5.14 at special level, this provides some
motivation for the following:

Conjecture 5.20 The local model I\A/ig,u has pseudo-rational singularities.

This would follow from Conjecture 3.6. For the purpose of proving Conjecture 5.20
for minuscule u, that is, the case relevant to Shimura varieties, it would suffice (by
Theorem 5.14) to also assume in Conjecture 3.6 that R is Cohen—Macaulay and R[7 ~']
is regular (as in [21, Proposition 2.13]), and F-injective can be replaced by F-split.

5.3 Functoriality of local models

In this subsection, we discuss the behavior of our local models under certain maps
of parahoric group schemes. This is not used elsewhere in the paper, but plays an
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important role in [1, Sect. 7] for proving a comparison theorem between the power
series approach of the present paper and the perfectoid approach in [1]. ~

In both equal and mixed characteristic, a morphism of pairs (G, u) — (G, [t) is
a map of O-group schemes G — G which maps u into it under the induced map of
reductive K-groups G — G in the generic fiber, compare Remark 5.2. In order to
study functoriality properties, it is useful to base change the local model to the absolute
integral closure O of O with fraction field denoted K.

In equal characteristic the formation of local models is functorial in the following
sense:

Lemma 5.21 In equicharacteristic (Sect. 5.1), the association (G, ) Mg,ﬂ ®o0, 0
from the category of pairs as above to the category of O-schemes is functorial. Under
Hypothesis 2.1, it commutes with finite products, and the map G — G,q induces an
isomorphism of Of-schemes

Mg, = MG,y 100,06k (5.9

where G — G,q is the map of parahoric O-models extending G — G,q and [iaq is
the composite of u with G g — G4 .

Proof This was proven in the course of Theorem 5.4, see especially the reduction in
the beginning of its proof. Recall that for the isomorphism (5.9) and the commutation
with finite products, the key fact is that AFZg, u ®or Of is normal for every finite field
extension £ D E. 0

Remark 5.22 Using Remark 5.7, the special fiber of AA/ig)M ®o; O is always reduced,
so the base changed local model is normal and Lemma 5.21 holds without assuming
Hypothesis 2.1.

In mixed characteristic (Sect.5.2), functoriality of (G, u) — Mg (or, its base

change to 0) is subtle due to the auxiliary choices involved in the construction of the
O[[t]l-group lift G. Here we point out two particularly interesting cases of functoriality:
canonical z-extensions, making the connection to [36, Section 2.6], and embeddings
into the Weil restriction of the split form, used in [1, Section 7].

5.3.1 Canonical z-extensions following [49, Section 2.4]

Assume K /Q,, is of characteristic 0 and use the notation introduced in Sect.5.2. In
particular, G satisfies Hypothesis 2.1, is adjoint, quasi-split and equipped with a quasi-
pinning. We lift the quasi-pinning along the simply connected cover Gsc — G. This
induces amap Gsc — G on the O[[¢]-lifts by functoriality of extending birational group
laws, compare Proposition 2.8. The maximal torus 7" acts by inner automorphisms on
Gy, so we may form G := Gy x T. By [49, Lemme 2.4.2], there is the z-extension

| > Ty t— (1,171 G (g.1)>gt

G—1 (5.10)

@ Springer



Singularities of local models

with éder =Ggand T — 5, t — (1, t) being a maximal torus. By functoriality of
extensions of birational group laws, the connected Néron model 7 acts on G by inner
automorphisms. This allows us to define the O[[¢]]-group scheme g := Gse ¥ 7T, which
equals the model birationally glued from (Zyc x 7T, (Ua),, eq)rg;d) as in Proposition 2.8.

Moreover, it fits in a short exact sequence of O[[]]-group schemes
15T >G> G—1, (5.11)

as can be seen by showing that G and the fppf quotient QN /Zsc are solutions to the
same birational group law, hence are isomorphic. The extension (5.11) is called the
canonical z-extension of G. ~

The following lemma relates Mg , to the construction of local models via z-
extensions as in [36, Sect. 2.6]. Here we view u as a geometric cocharacter of 7.

Lemma 5.23 Under Hypothesis 2.1, the map g — G from (5.10) induces an isomor-
phism of Of-schemes

Mg — Mg .. (5.12)

where i = (1, u) is viewed as a geometric cocharacter ofé =Gy xT.

Proof Firstly, as T is a maximal torus in both G and 5 the cocharacters ., i1 have the
same reflex field E. Thus, G — G induces a finite birational universal homeomorphism
on orbit closures

Mg 5 — Mg, (5.13)

which is an isomorphism on residue fields, see [26, Corollary 2.3 and its proof]. As
Gder = Gy, the orbit closure Ma’ i is normal by the proof of Theorem 5.14. So the

map (5.13) induces Mg i = MQ; because the latter is normal by Theorem 5.14. O

5.3.2 Embedding into the Weil restriction of the split form

We record the following result concerning the functoriality of the construction G +— G,
used in [1]. Recall the notation from Sect.2 and consider the adjunction morphism

G =Resy/k (Go) — ResL/KRes,;/L(Ho ®7 K) = Res,?/K(Ho ®z K) =: 5,
(5.14)

where K contains the Galois hull of M /L and Hy/Z is the split form of G induced
by (2.1). We assume the following:

Hypothesis 5.24 If p = 3, then Gy ®k K isnota triality form of type Djy.
Recall the O (#))-group lifts G from Lemma 2.7. We equip G with the quasi-pinning
induced from the pinning of Hy ®z K, leading to the O ((t))-group lift G.
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Lemma 5.25 Under Hypothesis 5.24, the map (5.14) lifts to a locally closed immersion
of O(t)-group schemes

G— G, (5.15)

compatibly with reduction to k (t)) fork =k, K.

Proof As the formation of G is compatible with restriction of scalars, we assume
without loss of generality that G = Gy, so L = K. Hypothesis 5.24 ensures that the
Galois hull of the fraction fields of the ring extension O[[t]] — Oy [[v] is given by
the fraction field of O g [[v]]. The map (5.15) exists by definition of G over the étale
locus U of O(t) — Opnr (v), compare with Lemma 2.3. It can be further extended to
Spec O((?)) by taking the obvious inclusions for the models of the root groups (2.21),
respectively the connected Néron models of tori, and by applying functoriality of solu-
tions to birational group laws, compare with [49, Proposition 3.3.9]. This constructs
(5.15), which is a locally closed immersion by [9, Proposition 2.2.10]. O

Let S C G be the maximal split subtorus contained in Res g /K (S). The inclusion
of apartments

(G,S,K)C 4G, S, K) (5.16)

is also compatible with the isoglorphism (2.20). For a point x € (G, S, K), we
denote its image by X € &/ (G, S, K).

Corollary 5.26 Forx € o/ (G, S, K), themap (5.15) extends to a locally closed immer-
sion of the O[[t]]-group schemes

Gx — Gr, (5.17)

constructed in Proposition 2.8. The map (5.17) reduces to the canonical map of para-
horic group schemes over O and «[[t]] withk =k, K.

Proof Applying functoriality of solutions to birational group laws, it suffices to con-
struct the maps between the models of roots groups and of tori, following [49,
Proposition 3.4.8]. The resulting map is again a locally closed immersion by [9, Propo-
sition 2.2.10]. That its reduction over O, respectively «[[¢]], is the expected map on
parahoric group schemes is clear from the construction, compare Proposition 2.8. O

Let us briefly return to the situation illustrated ig (5.14) of the closed embedding
of G into the associated Weil-restricted split form G. We denote by [ the geometric
conjugacy class of cocharacters of G obtained as the image of u. The following
compatibility at the level of local models plays a role in the proof of [1, Theorem 7.23].

Lemma 5.27 Under Hypothesis 2.1 and Hypothesis 5.24, the map G := G, —> % =
G from (5.17) induces a finite morphism

Mg, — 5 (5.18)
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factoring uniquely through its scheme-theoretic image via a universal homeomor-
phism.

Proof By naturality of the Beilinson—Drinfeld Grassmannian, we obtain a map
between the orbit closures, and hence the map (5.18) by functoriality of seminor-
malizations [70, Tag OEUS]. By projectivity of local models, it is enough to show that
(5.18) is injective on geometric points, which in turn can be tested on orbit closures.

In the generic fiber, the map Sg,, — Sg 5 of Schubert varieties is a closed
immersion because (5.14) is so. In the reduced special fibers, the map is given by
Agr . — Ag 5 onthe respective admissible loci and is induced from Ftg: — Fg.

It may happen that 7¢g: — F{g is not a monomorphism, because g — G is
a locally closed immersion. But this difference amounts to passing to a finite étale
quotient of F{g with isomorphic connected components (given by the affine flag
variety of the flat closure of the immersion), which embeds into F¢g . Since Ag' ;s
is connected, this is enough to deduce injectivity of Ag: ,» — Agjﬁ, on geometric
points. O
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