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Abstract
We construct local models of Shimura varieties and investigate their singularities,
with special emphasis on wildly ramified cases. More precisely, with the exception
of odd unitary groups in residue characteristic 2 we construct local models, show
reducedness of their special fiber, Cohen–Macaulayness and in equicharacteristic also
(pseudo-)rationality. In mixed characteristic we conjecture their pseudo-rationality.
This is based on the construction of parahoric group schemes over two dimensional
bases for wildly ramified groups and an analysis of singularities of the attached Schu-
bert varieties in positive characteristic using perfect geometry.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 Relationship with the perfectoid theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Group lifts to two-dimensional bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Witt lifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Breuil–Kisin lifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 A conjecture on pseudo-rationality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B Timo Richarz
richarz@mathematik.tu-darmstadt.de

Najmuddin Fakhruddin
naf@math.tifr.res.in

Thomas Haines
tjh@umd.edu

João Lourenço
j.lourenco@uni-muenster.de

1 School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai
400005, India

2 Department of Mathematics, University of Maryland, College Park, MD 20742-4015, USA

3 Mathematisches Institut, Universität Münster, Einsteinstrasse 62, Münster, Germany

4 Department of Mathematics, Technische Universität Darmstadt, 64289 Darmstadt, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00208-024-03036-y&domain=pdf


N. Fakhruddin et al.

3.1 Review of F-singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 (Pseudo-)rational singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Schubert varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 F-singularities of seminormalized Schubert varieties . . . . . . . . . . . . . . . . . . . . . . .

4.1.1 Preliminary reductions for the proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . .
4.1.2 Picard groups of perfected Schubert varieties . . . . . . . . . . . . . . . . . . . . . . . .
4.1.3 The central charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.4 The Demazure variety is stably compatibly F-split . . . . . . . . . . . . . . . . . . . . .
4.1.5 Picard groups of seminormalized Schubert varieties . . . . . . . . . . . . . . . . . . . . .
4.1.6 Vanishing of higher coherent cohomology of seminormalized Schubert varieties . . . . . .

4.2 Normality of Schubert varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3 Central extensions of line bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 Local models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1 Equicharacteristic local models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2 Mixed characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3 Functoriality of local models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.3.1 Canonical z-extensions following [49, Section 2.4] . . . . . . . . . . . . . . . . . . . . .
5.3.2 Embedding into the Weil restriction of the split form . . . . . . . . . . . . . . . . . . . .

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction

1.1 Background

Let O be a complete discretely valued ring with fraction field K and with residue field
k of characteristic p > 0, which for simplicity we assume is algebraically closed. Let
G be a (connected) reductive group over K .

The local models we consider in this paper are certain flat projective O-schemes
whichmodel the singularities of integral O-models of Shimura varieties (in the case of
mixed characteristic) and of G-shtukas (in the equicharacteristic case) with parahoric
level structure.

Local models attached to PEL type Shimura varieties with parahoric level structure
at a given prime number were developed in the book of Rapoport and Zink [61], and
were defined there in a linear algebra style using moduli spaces of self-dual lattice
chains in certain skew-Hermitian vector spaces. The local models were proved to be
étale locally isomorphic to the corresponding integral models of the Shimura varieties
defined using analogous chains of polarized abelian schemes with additional structure.
This has two important consequences:

(1) The singularities in the special fiber of the Shimura variety coincide with those of
its local model, which can be studied more directly;

(2) The sheaf of nearby cycles on its special fiber can be determined from the corre-
sponding object on the local model.

The approach in (1) goes back to de Jong [16], who used it to determine the singu-
larities appearing in Siegel modular 3-folds with Iwahori level structure at p (Shimura
varieties attached to GSp(4)); it was also exploited by many other authors, see [12, 18,
19, 23, 54, 56, 57, 59] for example. The method in (2) is a key ingredient in the study
of local Hasse–Weil zeta functions of Shimura varieties with parahoric level structure;
see the survey articles of Rapoport [62] and the second named author [27, 28].
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For more general Shimura varieties (as well as for moduli spaces of shtukas) a
more purely group-theoretic construction of local models – also satisfying (1) and (2)
above—is desirable, in parallel to Deligne’s group-theoretic axiomatic construction
of Shimura varieties [17]. Such constructions also have the benefit of tying the theory
of Shimura varieties more closely to Schubert varieties, loop groups, and other objects
appearing in the geometricLanglands program.This also gives hints about how tomake
the construction itself, with the help of Beilinson–Drinfeld affine Grassmannians.

The sought-after local models, which we denote by ˜MG,μ, arise as the seminormal-
izations of certain orbit closures MG,μ inside a Beilinson–Drinfeld Grassmannian,
and are associated to a parahoric group scheme G over O extending G, a geometric
conjugacy class μ of cocharacters of G and certain auxiliary additional data in the
mixed characteristic case, see Sect. 5.2. The schemes are constructed by Zhu in [72]
and by Pappas–Zhu in [60] for all G splitting over a tamely ramified extension of K .
Their construction in themixed characteristic setting is extended by Levin in [46] to all
groups G which are restrictions of scalars of tamely ramified groups, so covering all
G (up to central isogeny) in the cases where p ≥ 5. In the equal characteristic setting,
the construction for arbitrary groups is given in [64]. (In all these cases, flatness of the
local models so defined is automatic, in contrast with the lattice-theoretic proposals
in [61], which in certain cases failed to be flat, as first pointed out by Pappas. On the
other hand, unlike [61], these group-theoretic local models are not given by explicit
moduli problems.)

One of the main results of [72] and [60] is that when p � |π1(Gder)| the orbit
closures MG,μ are normal (hence coincide with ˜MG,μ) with reduced special fiber,
all of whose components are normal, Cohen–Macaulay and compatibly Frobenius
split. They also conjecture that under the same conditions the local models are always
Cohen–Macaulay [60, Remark 9.5 (b)]. This is proved by He in [34] in the case that
G is unramified and μ is minuscule and by the second and fourth named author [26,
Theorem 2.3] for p > 2 in all cases where local models had been constructed. In the
case when p | |π1(Gder)|, it is known by [32], that the orbit closures MG,μ are not
normal in general, so instead one passes to their seminormalizations ˜MG,μ which then
have the aforementioned properties.

The paper at hand extends the above results to all G and all p with the exception
of one family of examples: ramified odd unitary groups G in the case p = 2, see also
Remark 2.2. More precisely, excluding this family we construct local models ˜MG,μ

also for wildly ramified groups G which are not necessarily restrictions of scalars of
tamely ramified groups, and we prove that these models are normal, Cohen–Macaulay
and have reduced special fibers all of whose components are also normal, Cohen–
Macaulay and compatibly Frobenius split. The reader is referred to Lemma 5.23 for
the relation with the construction of local models via z-extensions from [36, Section
2.6]. Let us now explain our main results in more detail.

1.2 Main results

Fix O ⊂ K with residue field k and G as above. Denote by�G the relative root system
of G. If G ranges through all absolutely simple groups, then �G is non-reduced if and
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only if G is an odd unitary group, see Sect. 2. Our first main result is Theorem 5.4 in
the main text and concerns local models in equicharacteristic:

Theorem 1.1 Assume that K � k((t)) has characteristic p > 0. Also assume that
p > 2 or �G is reduced. Then the local model ˜MG,μ is Cohen–Macaulay, has rational
singularities, and reduced special fiber equal to the admissible locus ˜AG,μ.

For the definition of the admissible locus ˜AG,μ, the reader is referred to Defini-
tion 5.3. We also note that ˜MG,μ = MG,μ when p � |π1(Gder)|, see Remark 5.5 and
Remark 5.15. In Corollary 5.8, we also calculate the Picard group of ˜MG,μ.

Our second main result is Theorem 5.14 in the main text and concerns mixed
characteristic local models:

Theorem 1.2 Assume that K has characteristic 0. Also assume that p > 2 or �G is
reduced. Then the local model ˜MG,μ is Cohen–Macaulay and has a reduced special

fiber equal to the μ′-admissible locus ˜AG′,μ′ . If ˜AG′,μ′ is irreducible (for example, G
special parahoric), then ˜MG,μ has pseudo-rational singularities.

Here G′ andμ′ are equicharacteristic analogues of G andμ associated to them via a
choice of O[[t]]-group liftG, seeSect. 2.As above, ˜MG,μ = MG,μ when p � |π1(Gder)|,
and see Corollary 5.19 for its Picard group. Theorem 1.2 is slightly weaker than
Theorem 1.1 in that we do not prove that the singularities of ˜MG,μ are always pseudo-
rational. However, we conjecture that this is always the case, see Conjecture 5.20.

1.3 Methods

We now explain our methods and the structure of this paper. The main input needed
to construct the local model (in mixed characteristic) is, as in [60], the construction
of a lifting of the parahoric group scheme G over O to a group scheme G over O[[t]].
The special fiber of the local model is then a closed subscheme of a partial affine flag
variety over k and to analyze this we also need to construct lifts of parahoric group
schemes over k[[t]] to W (k)[[t]]. These steps were carried out for tame groups in [55,
60].

So we need to extend these constructions to wild groups. The group lifts are con-
structed in Sect. 2 using ideas from [49]: we define suitable integral models ofmaximal
tori and root groups separately which induce birational models and then apply the
result that such a model extends to a unique group scheme. The reason that we have
to exclude the case of odd unitary groups stems from this very first step since we are
unable to construct the lifts of root groups in the case of multipliable roots when G is
ramified and p = 2, see Remark 2.2.

In Sect. 3 we start with a review of F-singularities and (pseudo-)rational singulari-
ties. These techniques are central to the study of singularities of local models in later
sections. Conjecture 3.6 states a conjectural mixed characteristic analogue of a result
of Schwede and Singh [40, Appendix A], which would imply pseudo-rationality of
mixed characteristic local models, see also the discussion below.

The first step in analyzing the singularities of local models is the study of the singu-
larities of Schubert varieties Sw in affine flag varieties.We carry this out in Sect. 4, first
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proving in Theorem 4.1 that the seminormalizations ˜Sw are always normal, Cohen–
Macaulay, compatibly Frobenius split and have rational (in fact, even F-rational)
singularities. We use the by now standard method of applying theMehta–Ramanathan
criterion for Frobenius splitting, but we need some extra arguments for p = 2, 3. In
Theorem 4.25, we then show that if p > 2 or�G is reduced, then all Schubert varieties
Sw are normal if and only if p does not divide the order of π1(Gder).

In Sect. 5, we construct our localmodels and prove ourmain results. In the equichar-
acteristic case, the local model is canonical. In mixed characteristic, it depends on the
choice of the group lift G constructed in Proposition 2.6. For minuscule μ, which
is the case relevant to Shimura varieties, it is expected that these are independent of
all choices, see [66, Conjecture 21.4.1], [36, Conjectures 2.12, 2.15] and also [1]. To
identify the special fiber and prove that it is reduced, we follow the method of [72]
and [60] based on the coherence conjecture. This is fairly straightforward, given the
results of Sect. 4. It then remains to prove that the special fiber is Cohen–Macaulay.
To do this, we use a variant of the argument used in [26, Section 6], which has the
advantage of also being applicable in characteristic 2 since it does not depend on
Zhu’s global Frobenius splitting [72, Theorem 6.5]. The proof uses some results in
commutative algebra by Schwede and Singh [40, Appendix A] to deduce that in
equicharacteristic p the local models are Cohen–Macaulay and have F-rational (hence
pseudo-rational) singularities. In the case of mixed characteristic, we get the reduced-
ness and Cohen–Macaulayness of the special fiber of the local model by comparing
with the equicharacteristic case. However, it does not seem possible to immediately
transfer pseudo-rationality fromequal characteristic tomixed characteristic.Motivated
by this we discuss the above mentioned conjectural mixed characteristic analogue
(Conjecture 3.6) of one of the results of Schwede and Singh which, given our other
results, would suffice to deduce the pseudo-rationality of local models in mixed char-
acteristic.

1.4 Relationship with the perfectoid theory

Let us comment on the relationship between thiswork and the other recentworks [1, 22]
by some of the authors. The first paper [1] studied at length a perfectoid analogue of the
local model constructed in Scholze–Weinstein’s book [66]. An important conjecture in
[66] postulated that these perfectoid localmodels, despite only being v-sheaves, should
be representable by a flat, normal, and projective scheme over OE with reduced special
fiber. This was proved in [1, Section 7] under Hypothesis 2.1 and Hypothesis 5.24,
using the constructions of this paper as an input and comparing them to the v-sheaves
of perfectoids via a specialization principle. However, we stress that the results in
[1] concerning the singularities of local models like reducedness of their special fiber
and Cohen–Macaulayness rely on the present paper. As for [22], it gives a new proof
that local models are normal with reduced special fiber, including the missing cases
of Hypothesis 2.1 and Hypothesis 5.24. The statements in [22] related to Frobenius
splittings of the special fiber or Cohen–Macaulayness rely again on the present paper.
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2 Group lifts to two-dimensional bases

In our presentation we follow [49, Sects. 2–3] to construct group lifts via gluing
from birational group laws. The method works for Witt lifts (equal characteristic) and
Breuil–Kisin lifts (mixed characteristic) in the same way which we, however, treat in
the separate Sects. 2.1 and 2.2 for readability. We start by fixing some notation.

Let O denote a complete discretely valued ring with fraction field K and perfect
residue field k of characteristic p > 0. Let Ŏ/O be the completion of the maximal
unramified extension with fraction field K̆/K . Let G be a reductive K -group that is
quasi-split (automatic if K = K̆ by Steinberg’s theorem) and either simply connected
or adjoint. Denote by Ğ := G ⊗K K̆ the base change.

Assume G is also almost K -simple. Then G = ResL/K (G0), for some finite sepa-
rable field extension L/K , of an absolutely almost simple L-group G0 [5, Sect. 6.21
(ii)], which is necessarily quasi-split and simply connected or adjoint, respectively.
Choose a separable field extension M/L of minimal degree such that G0 splits over
its Galois hull. As the only non-trivial automorphism groups of connected Dynkin
diagrams are Z/2 and S3, the extension M/L is of degree ≤ 3.

In this section, we also work under the following:

Hypothesis 2.1 If p = 2, then the relative root system �Ğ is reduced.

An examination of the tables in [71] shows that �Ğ is non-reduced if and only if
the associated absolutely almost simple group Ğ0 = G0 ⊗K K̆ is isomorphic to an
odd unitary group. So Hypothesis 2.1 excludes this case if p = 2.

Fix a maximal K -split torus S ⊂ G with centralizer equal to a maximal torus T
and a Borel subgroup B containing it. Let H/Z be the split form of G equipped with
a pinning. Choose a Chevalley–Steinberg system for H , see [49, Section 2.1]. Let
K s/K be a Galois extension splitting G, and fix an isomorphism

G ⊗K K s �−→ H ⊗Z K s (2.1)

preserving the chosen maximal tori and Borel subgroups such that the Gal(K s/K )-
action transported to the target acts by pinned automorphisms, soG = ResK s/K (H ⊗Z

K s)Gal(K s/K ) by Galois descent.
The Chevalley–Steinberg system for H induces a Chevalley quasi-system for the

quasi-split groupG in the sense of [49,Définition 2.2.6, Proposition 2.2.7]. Essentially,
this is the choice of the pair S ⊂ B in G along with a family of isomorphisms

xa : Ua
�−→

{

ResLa/K Ga

ResL2a/K HLa/L2a

(2.2)

for all a ∈ �nd
G with �nd

G ⊂ �G the subset of non-divisible roots and Ua the corre-
sponding root subgroup. Here, if �G is reduced, then La = M if a ∈ �<

G is short
and La = L if a ∈ �>

G is long. If �G is non-reduced, then La = M ⊃ L = L2a if
2a ∈ �G and HLa/L2a is the L2a-group described in [9, 4.1.9]. Here, the quadratic
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extension La/L2a is allowed to be ramified if p > 2 but must be unramified if p = 2
by Hypothesis 2.1. This induces a Chevalley valuation ofA (G, S, K ), see [9, 4.2.2],
which we then regard as the origin of that affine space, which then becomes identified
with V (S) = X∗(S) ⊗ R.

Remark 2.2 Let us comment on the various hypotheses on G.

(1) If we wished to include the case where p = 2 and�G is non-reduced, the structure
of Ua would be arithmetically more involved, particularly as the subset M0 ⊂ M
of trace zero elements does not behave so well, see [9, Sections 4.1.10, 4.2.20]. For
instance, the valuation of M0 divides the quadratic separable extensions into those
given by roots of primes and the rest of them, see [9, Lemmes 4.3.3, 4.3.4]. Root-
of-prime extensions are treated in [49] relying on the theory of pseudo-reductive
groups. For the other quadratic extensions, we do not know, for example, how to
construct the groups Ua that appear below.

(2) The case of quasi-split and simply connected (respectively, adjoint) groups G
appears to be most important when studying the geometry of Schubert varieties
and local models. Note that for such G the maximal torus T is induced [9, Propo-
sition 4.4.16], which is a technical convenience, see the proof of Lemma 2.5. If
we wished to include more general central extensions of G with induced maximal
torus, we could follow the construction in [49, Sect. 2.4], see also Sect. 5.3.1 for a
particular interesting case. Further, it should be possible, though difficult, to extend
the construction of group lifts below to not necessarily quasi-split groups using
étale descent [9, Sect. 5].

2.1 Witt lifts

In this subsection, we assume that K is a Laurent series field of characteristic p > 0.
Choosing uniformizers u of L and t of K , we identify their rings of integers OL =
kL [[u]] and O = k[[t]] as k-algebras. The uniformizers satisfy an Eisenstein equation:

ue + ae−1(t)u
e−1 + · · · + a1(t)u + a0(t) = 0 (2.3)

where each of the

ai (t) =
∑

bi j t
j (2.4)

is a power series with bi j ∈ kL , bi0 = 0 and b01 �= 0. Consider now the defining
equation

ue + [ae−1(t)]ue−1 + · · · + [a1(t)]u + [a0(t)] = 0 (2.5)

where each of the

[ai (t)] =
∑

[bi j ]t j (2.6)
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is a power series in W (kL)[[t]] obtained by taking Teichmüller representatives of
the coefficients. Then (2.5) defines the finite free W (k)[[t]]-algebra W (kL)[[u]],
which reduces modulo p to the k[[t]]-algebra kL [[u]]. Similarly, we lift OM/OL to
W (kM )[[v]]/W (kL)[[u]] via a choice of uniformizers.

Lemma 2.3 The quasi-pinned K -group (G, B, S, (xa)a∈�nd
G

) lifts to
(G, B, S, (xa)a∈�nd

G
) defined over the maximal open subset U ⊂ Spec W (k)[[t]] over

which the extension W (kM )[[v]]/W (k)[[t]] is étale.

Proof Firstly, the split form H/Z of G with its Chevalley–Steinberg system induces
a split form H0/Z of G0 with such a system. As quasi-pinnings are compatible with
restriction of scalars along finite étale maps, we reduce to the case G = G0 is abso-
lutely almost simple and without loss of generality also non-split. Let ˜V be the Galois
hull of the finite étale map V := f −1(U ) → U where f : Spec W (kM )[[v]] →
Spec W (k)[[t]]. As f is ramified at {t = 0}, we have U ⊂ Spec W (k)((t)) and the
reduction of ˜V → U modulo p defines a Galois ring extension ˜K/K splitting G.
Hence, Gal(˜V /U ) → Gal(˜K/K ) acts through (2.1) by pinning preserving automor-
phisms on H , replacing K s by ˜K if necessary. We define

G = Res
˜V /U (H ⊗Z

˜V )Gal(
˜V /U ), (2.7)

equippedwith the quasi-pinning induced from the chosenChevalley–Steinberg system
for H , which satisfies the requirements of the lemma. 
�

Note that W (k)((t)) is a Euclidean domain which is not local. Even though the
extension W (kM )((v))/W (k)((t)) is ramified in general, we can extend G from U over
Spec W (k)((t)) via a birational extension process as follows. Note that we have the
maximal torus T in G defined over U . We consider the family of group schemes
consisting of the connected Néron W (k)((t))-model of T denoted by the same symbol,
and the unipotent group schemes

Ua =
{

ResW (ka)((ta))/W (k)((t))Ga

ResW (k2a)((t2a))/W (k)((t))HW (ka)((ta))/W (k2a)((t2a))

(2.8)

for every non-divisible root a ∈ �G , extending the quasi-pinning defined in
Lemma 2.3. Here, the symbols ka denote the residue field of the root fields La ,
and the variables ta are either one of the prescribed lifts u or v of the uniformizer of
La , depending on whether it equals L or M .

Lemma 2.4 The models (T , Ua) glue birationally to a smooth, affine W (k)((t))-group
G with connected fibers extending (2.7).

Proof This follows from the method of [49, Proposition 3.3.4]. Here we give an
overview of the argument.

First, we must show that the axioms of [9, Définition 3.1.1] are satisfied: These
involve showing that the conjugation action of T on theUa , the commutatormorphisms
between Ua and Ub for linearly independent roots, and a rationally defined morphism
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exchanging the order of±a in a rank 1 big cell extend fromU (defined in Lemma 2.3)
to all of Spec W (k)((t)). In the rank 1 case, we can construct G explicitly by extending
the definition of G over U , isogenous to a restriction of scalars of either SL2 or SU3,
to the more general ring extensions that we consider; this provides us with the first
and third morphisms using the Néron property of T . Hence, the main concern are
commutator morphisms. Over the generic fiber, these morphisms are given explicitly
in [9, Sect. A.6], up to sign and conjugation, and only involve natural operations such
as sum, multiplication, trace and norm, so they are still well-defined over W (k)((t)).
For example, if�G is reduced, and a, b are short roots with long sum c = a+b ∈ �G ,
then the commutator γa,b is given on points under the fixed pinnings by

(x, y) → trR[ta ]/R(xy), (2.9)

where R is any W (kc)((tc))-algebra, and x, y ∈ R[ta] = R ⊗W (kc)((tc)) W (ka)((ta)), up
to ignoring sign and conjugation. It is now a consequence of [49, Théorème 3.2.5]
that there is a smooth affine W (k)((t))-group G with connected fibers glued from these
closed subgroups. Here, for affineness we use the fact that W (k)((t)) is a Dedekind
ring. 
�

Wealreadyknow thatG is reductive over k((t)) and K0((t)),where K0 = W (k)[p−1].
We can compare a portion of their Bruhat–Tits theory.

Lemma 2.5 There are identifications

A (G, S, k((t))) � A (G, S, K0((t))), (2.10)

of apartments, equivariant along a natural identification of the Iwahori–Weyl groups.

Proof Our method of proof is similar to [49, Proposition 3.4.1]. We fix as origin of
the apartments the Chevalley–Steinberg valuations determined by the quasi-pinning
inherited from (2.8). Then, both identify with the real vector space V (S) generated
by the coweights of the split torus S compatibly with the hyperplanes.

As G is assumed to be either simply connected or adjoint, the maximal torus T is
induced and so is T overU . We denote by T its connected Néron W (k)[[t]]-model, see
[49, Définition 3.3.3] and [50, Part IV, Proposition 3.8]. Let N be the normalizer of S
in G. In order to identify the Iwahori–Weyl groups, we prove that they are isomorphic
to

N (W (k)((t)))/T (W (k)[[t]]) (2.11)

via the natural maps as follows. It suffices to show that the natural maps

T (W (k)((t)))/T (W (k)[[t]]) → T (L((t)))/T (L[[t]]) (2.12)

and

N (W (k)((t)))/T (W (k)((t))) → N (L((t)))/T (L((t))), (2.13)
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are isomorphisms, where L equals either k or K0. The first case (2.12) is verified by
decomposing T as a product of restriction of scalars of multiplicative group schemes.
The second case (2.13) is a consequence of constancy of theWeyl group of a split torus
and vanishing of H1 for T . One sees readily that these comparison isomorphisms are
compatible with those of the apartments and the corresponding group actions. 
�

For any point x in the apartments, we have a certain optimal quasi-concave function
fx : �G → R in the sense of [9, Sect. 4.5], defined with respect to the chosen origin,
the Chevalley–Steinberg valuation. We use this to define the W (k)[[t]]-models Ua,x

via

Ua,x =
{

ResW (ka)[[ta ]]/W (k)[[t]]
(

tea fx (a)
a Ga

)

ResW (k2a)[[t2a ]]/W (k)[[t]]
(

t (ea fx (a),ea fx (2a))
a HW (ka)[[ta ]]/W (k2a)[[t2a ]]

) ,

(2.14)

where the ea are the ramification degrees of the root field extension La/K , and by
construction the ea fx (a) are integers.

Proposition 2.6 The models T and Ua,x for all a ∈ �nd
G birationally glue to a smooth,

affine W (k)[[t]]-group scheme Gx with connected fibers. Its reductions to k[[t]] and
K0[[t]] are parahoric group schemes coming from facets which correspond under
(2.10).

Proof To see that the models T and Ua,x for all a ∈ �nd
G satisfy the axioms of [9,

Définition 3.1.1], we can proceed as in [49, Proposition 3.4.5]: due to the equality
W (k)((t)) ∩ K0[[t]] = W (k)[[t]], it suffices to apply [9, Théorème 3.8.1] to prove the
existence of a birational group law. So it glues to a smooth and separated group scheme
Gx with connected fibers due to [49, Théorème 3.2.5].

This group scheme is quasi-affine and admits a smooth affine hull, whose geomet-
ric fibers are connected outside the unique closed point of Spec(W (k)[[t]]), by [49,
Proposition 3.2.7]. In order to check affineness, we apply verbatim the proof in [49,
Théorème 3.4.10]: indeed, this relies on the identification of the Iwahori–Weyl groups
given in Lemma 2.5. 
�

2.2 Breuil–Kisin lifts

In this subsection, we assume that K has characteristic zero. So L/K is a finite exten-
sion of complete discretely valued fields of characteristic zero with perfect residue
fields kL/k of characteristic p > 0. Define also Lnr/K as the maximal unramified
subextension of L/K , so L/Lnr is totally ramified. Choosing uniformizers πL of L
and πK of K , they satisfy an Eisenstein equation:

πe
L + ae−1(πK )πe−1

L + · · · + a0(πK ) = 0, (2.15)

where each of the ai (πK ) ∈ πK OLnr is a power series in πK with coefficients being
Teichmüller representatives of elements in kL and satisfying the usual constraints,
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compare with (2.3). Assume without loss of generality that there exists i with (i, p) =
1 and

ai (πK ) �= 0. (2.16)

This can be achieved by replacing πL by πL + πK , if needed. Consider, in analogy to
(2.5), the equation

ue + [ae−1(t)]ue−1 · · · + [a0(t)] = 0, (2.17)

where u and t are indeterminates, each of the [ai (t)] ∈ W (kL)[[t]] is obtained from
ai (πK ) by taking the coefficients and by replacing πK by t . Equation (2.17) defines the
finite free W (k)[[t]]-algebra W (kL)[[u]]. We repeat this procedure for M/L: choose a
uniformizer πM of M satisfying the analogue of (2.16) with respect to πL , an indeter-
minate v and define the finite free W (kL)[[u]]-algebra W (kM )[[v]]. Tensoring with O
over W (k), we arrive at the finite free ring extensions

O[[t]] ⊂ OLnr [[u]] ⊂ OMnr [[v]], (2.18)

where Lnr and Mnr are the maximal unramified subextensions of L/K and M/K ,
respectively. The tower (2.18) reducesmodulo t −πK to O ⊂ OL ⊂ OM ; its reduction
modulo πK is k[[t]] ⊂ kL [[u]] ⊂ kM [[v]] with separable fraction field extensions by
(2.16).

As for the group G endowed with its quasi-pinning (B, S, (xa)a∈�nd
G

), these data
also lift to an open neighborhood U ⊂ Spec O[[t]] of the points (πK ) and (t − πK )

in analogy to Lemma 2.3, and we denote the resulting U -groups by G, B, T and S as
before. To extend G fromU over Spec O((t)), we proceed again via a gluing procedure
using extensions of birational group laws. Consider the family of group schemes
consisting of the connected Néron O((t))-model T (note that O((t)) is a Dedekind
domain), and the unipotent group schemes

Ua =
{

ResOLnra
((ta))/O((t))Ga

ResOLnr2a
((t2a))/O((t))HOLnra

((ta))/OLnr2a
((t2a))

(2.19)

for every root a ∈ �nd
G , extending the generic quasi-pinning. Here, the variables ta are

either t , u or v depending on the cases for the root fields La for a ∈ �G explicated in
(2.2). We arrive at the following result:

Lemma 2.7 The models (T , (Ua)a∈�nd
G

) birationally glue to a smooth, affine O((t))-
group G with connected fibers. Furthermore, its fibers over K and κ((t)) for κ = k, K
are reductive, and there are identifications of apartments

A (G, S, K ) � A (G, S, κ((t))), (2.20)

equivariantly for the respective Iwahori–Weyl groups.
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Proof The proofs of Lemmas 2.4 and 2.5 translate literally. 
�
For any point x in the apartments (2.20), we have the quasi-concave function

fx : �G → R, compare with (2.14). We define the O[[t]]-models Ua,x by

Ua,x =
{

ResOLnra
[[ta ]]/O[[t]]

(

tea fx (a)
a Ga

)

ResOLnr2a
[[t2a ]]/O[[t]]

(

t (ea fx (a),ea fx (2a))
a HOLnra

[[ta ]]/OLnr2a
[[t2a ]]

) ,

(2.21)

where the ea are the ramification degrees of the extensions La/K and by construction
the ea fx (a) are integers. Let T be the connected Néron O[[t]]-model of the induced
torus T U , compare with the proof of Lemma 2.5.

Proposition 2.8 The models T and Ua,x for all a ∈ �nd
G birationally glue to a smooth,

affine O[[t]]-group scheme Gx with connected fibers. Its reductions to O and κ[[t]],
with κ = k, K are parahoric group schemes coming from facets which correspond
under (2.20).

Proof The proof of Proposition 2.6 applies verbatim. 
�

3 A conjecture on pseudo-rationality

We recall some definitions and facts from the theory of singularities, especially in pos-
itive characteristic. Conjecture 3.6 below is a mixed characteristic analogue of a result
of Schwede–Singh recalled in Lemma 3.2. Its proof would imply that mixed charac-
teristic local models also have pseudo-rational singularities, see Conjecture 5.20.

3.1 Review of F-singularities

A Noetherian scheme X over Fp is said to be F-finite if the absolute Frobenius
morphism F : X → X is a finite morphism (for example, finite type schemes over
F-finite fields). It is said to be F-split if the canonical morphism OX → F∗OX has
an OX -linear splitting. We say X is stably F-split if for some e > 0 the map OX →
Fe∗OX splits, and the two notions are equivalent by [4, Lemma 5.0.3]. Moreover, a
closed subscheme Y ⊂ X is compatibly (stably) F-split if the corresponding splittings
respect the closed immersion, and again the stable notion is an equivalent one by [4,
Lemma 6.0.4]. A local Fp-algebra (R,m) is said to be F-injective if the map on local
cohomology F∗ : H•

m(R) → H•
m(R) is injective (for example, local rings of F-split

schemes).
A Noetherian reduced F-finite Fp-algebra R is said to be F-regular if every prime

ideal localization Rp has all its ideals tightly closed, see [39, Sect. 1]. If every parameter
ideal of such an Rp is tightly closed, we say Rp is F-rational; see [38, Definition 4.1],
and also [21] or [68].We say a Noetherian reduced F-finite Fp-scheme has F-rational
singularities if all of its local rings are F-rational.
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A projective scheme X over an F-finite field is said to be globally F-regular
provided that for every ample invertible sheafL, the section ring

⊕

n∈Z≥0
H0(X ,L⊗n)

is a strongly F-regular ring, in the sense of [39, Sect. 3] (see also [11, Definition 5.2]).
By [39, Theorem 3.1(d)], any strongly F-regular ring is F-regular (the converse is
expected but appears to be an open question in general). A key property of strong
F-regularity is that it passes to all prime localizations of the ring.

We shall use the following results, extracted from [39, 40, 69].

Lemma 3.1 A globally F-regular projective variety Proj(S) over a perfect field is
F-rational.

Proof By [69, Theorem 3.10], S is strongly F-regular. By [39, Theorem 3.1], all
localizations of S and all direct summands of such are strongly F-regular. This means
the local rings of Proj(S) are strongly F-regular. Now by [39, Theorem 3.1(d)], they
are also F-regular, which means that all ideals are tightly closed. In particular these
local rings are F-rational. 
�
Lemma 3.2 Let R be an F-finite Noetherian local ring and t a non-zero divisor. If
R/(t) is F-injective and R[t−1] is F-rational, then R is F-rational.

Proof This is Schwede–Singh [40, Corollary A.4]. 
�

3.2 (Pseudo-)rational singularities

We follow [48, Sect. 2] (see also [68, Definition 1.8]):
An excellent (thus Noetherian) local ring (R,m) is said to be pseudo-rational if

it is normal, Cohen–Macaulay, admits a dualizing complex, and if for each proper
birational morphism π : Y → Spec(R) with Y normal, the canonical map

f∗ωY → ωR (3.1)

is an isomorphism (or equivalently, is surjective on global sections [48, Sect. 4], or
equivalently by duality theory Hd

m(R) → Hd
m(R f∗OY ) = Hd

f −1(m)
(OY ) is injective

for d = dim(R)). An excellent scheme has pseudo-rational singularities (or is pseudo-
rational) if each of its local rings is pseudo-rational.

Remark 3.3 In order to establish pseudo-rationality, one may restrict to the class of
projective birational morphisms π : Y → Spec(R) with Y normal, by an application
of Chow’s lemma. Further, we note that the definition of pseudo-rationality in [51,
Definition 2.6] is weaker in that R is not required to be excellent or normal.

Lemma 3.4 Any excellent local Fp-algebra R which is F-rational is also pseudo-
rational.

Proof This is [68, Theorem 3.1]. 
�
The next lemma is used in Theorem 5.14 to establish pseudo-rationality of special

local models:
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Lemma 3.5 Let R be a local ring of mixed characteristic (0, p) which is excellent,
normal and admits a dualizing complex. Let π ∈ m be a non-zero divisor such that
R/(π) is an Fp-algebra. If R/(π) is F-rational, then R is pseudo-rational.

Proof Since R is assumed to be normal, this is [51, Theorem 3.8]. 
�
The following conjecture is a mixed characteristic analogue of Lemma 3.2. Since

it does not appear in the literature (but see the discussion at https://mathoverflow.net/
q/396462), we write it down here:

Conjecture 3.6 In the situation of Lemma 3.5, if R/(π) is F-finite and F-injective,
and R[π−1] is pseudo-rational, then R is pseudo-rational.

We conclude this section by recalling a stronger notion of rationality over a per-
fect field k. Let X be a finite type k-scheme. We say X has rational singularities if
it is Cohen–Macaulay and there exists a proper birational morphism f : Y → X of
k-schemes with Y smooth over k (in which case we say X has a resolution of singu-
larities) such that the natural mapOX → R f∗OY is an isomorphism. It follows using
Grothendieck–Serre duality that if X has rational singularities then Ri f∗ωY = 0 for
all i > 0. Moreover, it also follows that X has pseudo-rational singularities by [44,
Lemma 9.3], but we do not use this fact anywhere in the present paper. We note that
this notion of rational singularities is independent of the choice of resolution by [13,
Theorem 1].

4 Schubert varieties

Let k be an algebraically closed field of characteristic p > 0, K = k((t)) be the
corresponding Laurent series field and O = k[[t]] the power series ring.

Let G be a reductive K -group. For each facet f ⊂ B(G, K ) of the Bruhat–Tits
building, we denote by G = Gf the associated parahoric O-group scheme extending
G, see [9, Définition 5.2.6 ff.].

The loop group LG, respectively positive loop group L+G, is the functor on the
category of k-algebras R given by LG(R) = G(R((t))), respectively L+G(R) =
G(R[[t]]). Then L+G ⊂ LG is a subgroup functor, and the (twisted partial) affine flag
variety is the étale quotient

F�G = LG/L+G, (4.1)

which is represented by an ind-projective k-ind-scheme by [55, Theorem 1.4].
In the following, we fix two facets f, f ′ ⊂ B(G, K ) and denote by G = Gf ,

G′ = Gf ′ the associated parahorics. Given an element w ∈ L+G′(k)\LG(k)/L+G(k),
the Schubert variety Sw is the reduced L+G′-orbit closure of w̃ · e in F�G , where w̃ ∈
LG(k) is any representative of w and e the base point of F�G , see [55, Definition 8.3]
and compare with [26, Sect. 3]. Then Sw is a projective k-variety admitting the L+G′-
orbit Cw of ẇ · e as a dense open subset. This induces a presentation on reduced
ind-schemes
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(F�G)red = colim Sw, (4.2)

where w runs through the double cosets as above, and all transition maps Sv → Sw

are closed immersions.

4.1 F-singularities of seminormalized Schubert varieties

Let˜Sw → Sw be the seminormalization [70, 0EUK], that is, the initial schememapping
universally homeomorphically to Sw with the same residue fields. In this subsection
we show the following result for general reductive K -groups:

Theorem 4.1 The seminormalized Schubert varieties˜Sw are normal, Cohen–Macaulay,
compatibly F-split and have rational singularities. Furthermore, the ˜Sw are globally
F-regular, hence have F-rational singularities.

Here compatibly F-split carries the following meaning. By functoriality of semi-
normalizations [70, 0EUS], there are maps ˜Sv → ˜Sw lifting the closed immersions
Sv → Sw from (4.2), yielding the (a priori non-strict) ind-scheme

˜F�G = colim˜Sw. (4.3)

In the course of the proof of Theorem 4.1, we show that ˜Sv → ˜Sw are closed immer-
sions (see Lemma 4.5) and that ˜Sw is F-split compatibly with all closed subvarieties
˜Sv .

Remark 4.2 The methods from [20, Theorem 8], [55, Theorem 8.4] and [11, Theo-
rem 1.4] essentially imply Theorem 4.1 for all groups whose adjoint simple factors are
Weil restrictions of scalars of tamely ramified groups. Theorem 4.1 is new whenever
one of the absolutely simple factors is wildly ramified, therefore covering general
reductive K -groups.

Remark 4.3 There exist surfaces which have rational, but not F-rational, singularities
[33, Example 2.11]. Further, we note that by the proof of Lemma 3.1, we know
something slightly stronger than F-rationality, namely, the local rings of ˜Sw are F-
regular.

4.1.1 Preliminary reductions for the proof of Theorem 4.1

Recall the notation G = Gf , G′ = Gf ′ . Let S be a maximal K -split torus with f, f ′ ⊂
A (G, S, K ), see [8, Theorem 7.4.18 (i)]. Fix an alcove a in the apartment containing
f in its closure, and denote by I = Ga the associated Iwahori O-group scheme. The
affine Weyl group Waf (respectively, its subgroup WG) is the Coxeter group generated
by the simple reflections along the hyperplanes meeting the closure of a (respectively,
passing through f). There is a natural bijection Waf/WG ∼= L+I(k)\LG0(k)/L+G(k)

where LG0 denotes the neutral component. In order to prove Theorem4.1, wemay and
do assume without loss of generality that G′ = I andw ∈ Waf/WG , as every Schubert
variety is isomorphic to one of this particular form by [26, Sect. 3.1, Corollary 3.2].
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In the followingwe identify theBruhat order on the coset spaceWaf/WG compatibly
with the Bruhat order on the subset of right WG-minimal representatives in Waf , see
[63, Lemma1.6]. Supposew ∈ Waf is rightWG-minimal. Fix a reduced decomposition
as a product of simple reflections ẇ = s1 · . . . · sd in Waf . Denote by Dẇ the Demazure
variety for ẇ, denoted D(w̃) in [55, Proposition 8.8]. By [26, Sect. 3.3], there is a
projective morphism

Dẇ → Sw, (4.4)

which is an isomorphism over the open Schubert cell Cw, hence birational and surjec-
tive. For any v ≤ w in the Bruhat order, the reduced decomposition ẇ induces a (not
necessarily unique) reduced decomposition v̇ of v, so there exists a closed immersion
Dv̇ → Dẇ covering Sv → Sw. The following lemma makes the connection to the
normalized Schubert varieties appearing in [26, 32]:

Lemma 4.4 The seminormalized Schubert varieties ˜Sw are normal.

Proof The normalization morphism Snor
w → Sw is a universal homeomorphism [26,

Proposition 3.1 i)], which induces an isomorphism over Cw (because it is regular).
By the universal property of seminormalizations, it remains to show that Snor

w → Sw

induces an isomorphism on all residue fields. We observe that there are transition
maps Snor

v → Snor
w lifting the closed immersions Sv → Sw, see the proof of [55,

Proposition 9.7 (b)] using the functoriality of the Demazure resolution (4.4). Now,
given a point x ∈ Sw lying in some cell Cv , it induces a tower of residue field
extensions κ(Snor

v , x) ⊃ κ(Snor
w , x) ⊃ κ(Sw, x) = κ(Cv, x). As Snor

v → Sv is an
isomorphism over Cv , all inclusions are equalities which implies the lemma. 
�

Lemma 4.4 implies that (4.4) factors through ˜Sw → Sw inducing the birational
projective morphism

f : Dẇ → ˜Sw, (4.5)

with the property f∗ODẇ
= O

˜Sw
, compare [26, Sect. 3.3]. The proof of the next lemma

follows the arguments from [11, 45] and reduces Theorem 4.1 to the corresponding
result for Demazure varieties. The latter case is proved in Sect. 4.1.4, see (4.26) for
details.

Lemma 4.5 Assume that the Demazure variety Dẇ is compatibly stably F-split with
the divisors Dv̇ for all subwords v̇ of ẇ of colength 1. Then Theorem 4.1 holds true.

Proof Recall that compatibly stably F-split varieties are compatibly F-split by [4,
Lemmas 5.0.3, 6.0.4]. Now, if Dẇ is compatibly F-split with the divisors Dv̇ for v̇ of
colength 1, then Dẇ is compatibly F-split both with their union ∂ Dẇ and Dv̇ for all
subwords v̇ of ẇ by [7, Proposition 1.2.1].

Compatibility with ∂ Dẇ implies that Dẇ is globally F-regular (following the sec-
ond part of the argument in [11, Proposition 5.8] which applies verbatim). Recall that
we have an identity f∗ODẇ

= O
˜Sw

where f denotes the map (4.5), compatibly with
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the Frobenius, which allows us to descend any F-splitting along the proper cover f .
More generally, we can apply [45, Lemma 1.2] to f and deduce ˜Sw is globally F-
regular. Lemma 3.1 implies that˜Sw has F-rational singularities. Then by Lemma 3.4,
˜Sw is pseudo-rational, and in particular, is Cohen–Macaulay.

Next, consider the scheme-theoretic image Tv,w of the map ˜Sv → ˜Sw and follow
the argument in [55, Proposition 9.7 (b)]. This is a k-variety with seminormalization
equal to ˜Sv . Since Dv̇ is compatibly F-split inside Dẇ, we deduce that Tv,w is also
compatibly F-split with ˜Sw by pushforward along the map f . But F-split schemes
are weakly normal by [7, Proposition 1.2.5], and in particular seminormal, so we have
that Tv,w � ˜Sv . In other words, the maps ˜Sv → ˜Sw are closed immersions for all
v ≤ w and compatibly F-split.

Finally, we handle rationality of ˜Sw. We factor f as partial Demazure resolutions
having fibers of dimension at most 1

fi : Du̇i ×̃˜Svi → Du̇i+1×̃˜Svi+1, (4.6)

where we write ẇ = u̇i · v̇i with u̇i = s1 · · · · · sd−i and v̇i = sd−i+1 · · · · · sd . By
induction, it suffices to show vanishing of the higher direct images of the structure
sheaf along fi . Moreover, we may even ignore the factor Du̇i+1 ⊂ Du̇i and reduce to
the study of g : Ss×̃˜Sv → ˜Sw with w = sv being a reduced expression. We claim that
for any (not necessarily closed) point x ∈ ˜Sw the fiber g−1(x) is either isomorphic to
Spec(κ(x)) or to P1

κ(x): Indeed, if g−1(x) is 0-dimensional, then the birational map
g becomes a universal homeomorphism of normal varieties around x , thus a local
isomorphism by Zariski’s main theorem; if g−1(x) is 1-dimensional, then x belongs
to˜Su with u < v and su < u, andwe can directly see that the fibers of h : Ss×̃˜Su → ˜Su

are projective lines. Therefore, we have Hi (g−1(x),OSs×̃˜Sv
) = 0 for all i > 0, which

upgrades in the presence of an F-splitting to Ri g∗OSs×̃˜Sv
= 0 for all i > 0 by [7,

Lemma 1.2.11]. Since˜Sw is Cohen–Macaulay, Grothendieck–Serre duality yields also
Ri f∗ωDẇ

= ω
˜Sw
. This means ˜Sw has rational singularities, as desired. 
�

Remark 4.6 The map Gsc → G from the simply connected group extends to the
Iwahori O-models, and the induced map on Demazure varieties Dsc,ẇ → Dẇ is an
isomorphism, see [26, Proof of Lemma 3.8]. Further, Dsc,ẇ factors as a product of
Demazure varieties according to the almost simple factors of Gsc, and products of
(stably) compatibly F-split varieties are (stably) compatibly F-split [7, Sect. 1.3.E
(8)]. Therefore, in order to verify the assumption of Lemma 4.5, we may assume
whenever convenient that G = Gsc is simply connected and (by the Weil restriction
of scalars case in [26, Lemma 3.9]) absolutely almost simple and that G = I is the
Iwahori group scheme.

4.1.2 Picard groups of perfected Schubert varieties

In this subsection, we calculate the Picard groups of perfected Schubert varieties and
the induced map on the Demazure resolution. This plays a role later in proving the
existence of F-splittings for Demazure varieties, which requires the construction of a
certain divisor that is more easily done on the Schubert varieties.
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For any v ∈ Waf we consider the corresponding (I,G)-Schubert variety Sv and
its seminormalization ˜Sv . For the right WG-minimal element w above, we fix a
choice of reduced expression ẇ = s1 · . . . · sd and consider the Demazure resolu-
tion f : Dẇ → ˜Sw as in (4.5). For each simple reflection s ∈ Waf and any choice of
isomorphism of Dṡ ∼= P1

k , the degree of line bundles induces a well-defined isomor-
phism deg : Pic(Dṡ) ∼= Z.

Lemma 4.7 There is an isomorphism

Pic(Dẇ)
∼=−→ Zd , L �→ (deg(L|Dṡi

))i=1,...,d . (4.7)

Proof The method of [35, Proposition 3.4] applies as follows. Writing ẇ = ṡ · v̇ with
ṡ = s1, v̇ = s2 · . . . ·sd induces an étale locally trivial fibration Dẇ → Dṡ with general
fiber Dv̇ . The fibration is Zariski locally trivial by [55, Proposition 8.7 (b)]. Hence,
[52, Theorem 5] gives an exact sequence 0 → Pic(Dṡ) → Pic(Dẇ) → Pic(Dv̇) → 0,
which splits by using the section Dṡ → Dẇ. The lemma follows by induction. 
�

The universal homeomorphism ˜Sv → Sv induces an isomorphism on perfections
[3, Lemma 3.8], and we denote by Spf

v its common value. For each simple reflection
s ∈ Waf\WG , we have an isomorphism Ss = ˜Ss = Dṡ ∼= P1

k , and the degree map

uniquely extends to an isomorphism deg : Pic(Spf
s ) ∼= Z[p−1] (see [3, Lemma 3.5]);

further Pic(˜Ss) ∼= Pic(Spf
s ) = 0 if s ∈ WG , since ˜Ss ∼= Ss ∼= Spec(k) in that case.

Lemma 4.8 There is an isomorphism

Pic(Spf
w )

∼=−→
⊕

s

Z[p−1], L �→ (deg(L|
Spfs

))s (4.8)

where the sum runs over all s ∈ {s1, . . . , sd} with s /∈ WG . Further, the pullback map

Pic(˜Sw) → Pic(Spf
w ) is injective, and its image is a Z-lattice.

Proof The argument in [35, Proposition 3.9] applied to f : Dẇ → ˜Sw translates
verbatim, and we sketch it for the reader’s convenience. The pullback map Pic(˜Sw) →
Pic(Dẇ) is injective using the projection formula and the relation f∗ODẇ

= O
˜Sw

from
(4.5). Under the isomorphism Pic(Dẇ) ∼= Zd from Lemma 4.7, in the i-th component,
for all i = 1, . . . , d, the map is given by L �→ deg(L|Ssi

) if si /∈ WG and L �→ 0

else. (Note that if s ≤ w and iṡ : Dṡ → Dẇ covers is : ˜Ss ↪→ ˜Sw, then the map

Pic(˜Sw) → Pic(Dẇ)
i ∗̇s→ Pic(Dṡ) factors as Pic(˜Sw)

i∗s→ Pic(˜Ss) → Pic(Dṡ), hence is
zero if s ∈ WG .) For any qcqs Fp-scheme X one has Pic(Xpf) = Pic(X)[p−1] by [3,
Lemma 3.5]. So, passing to perfections implies injectivity of (4.8) and that Pic(˜Sw)

defines a Z-lattice in Pic(Spf
w ).

To prove surjectivity of (4.8), let (λs) ∈ ⊕sZ[p−1] ⊂ Z[p−1]d . This induces a line
bundleD = D(λs) on Dpf

ẇ . It suffices to show thatD is trivial along the fibers of f pf ,

for once we know this D descends to Spf
w by v-descent for vector bundles on perfect

varieties [3, Theorem6.13]. First, we factor f pf as partialDemazure resolutions having
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fibers of dimension at most 1 as in the proof of Lemma 4.5. By induction we may and
do replace f pf by a corresponding map gpf : Spf

s ×̃Spf
v → Spf

w with w = sv being a
reduced expression. Also, by the proof of Lemma 4.5 themap gpf has non-trivial fibers
exactly over the union of all Spf

u , with u ≤ v such that su < u. So, we restrict our
attention to the fibers of the map hpf : Spf

s ×̃Spf
u → Spf

u . By induction on w, we know
that Pic(Spf

u ) is a free Z[1/p]-module generated on its L+I-stable projective lines.
Following the argument in Lemma 4.7, the same assertion holds for Pic(Spf

s ×̃Spf
u ).

In particular, we see that the restriction of D to Spf
s ×̃Spf

u is the pullback of some line
bundle L on Spf

u along hpf . Hence, it is trivial along the fibers. 
�
As perfections preserve closed immersions [4, Lemma 3.4 (viii)], there is a strict

k-ind-scheme

F�
pf
G = colim Spf

w (4.9)

lying over ˜F�G = colim˜Sw from (4.3). Their Picard groups are defined as the limit of
the Picard groups of the respective Schubert varieties.

Corollary 4.9 There is an isomorphism

Pic(F�
0,pf
G )

∼=−→
⊕

s

Z[p−1], L �→ (deg(L|
Spfs

))s (4.10)

where F�0G denotes the neutral component and the sum runs over all simple reflections

s ∈ Waf\WG . The pullback map Pic(˜F�G) → Pic(F�
pf
G ) is injective.

Proof This is immediate fromLemma 4.8: For v ≤ w in Waf with large enough length,
the pullback map Pic(Spf

w ) → Pic(Spf
v ) is an isomorphism, which is the identity map

under (4.8). 
�

4.1.3 The central charge

We assume in this subsection (for simplicity) that G is almost simple and simply
connected, compare with Remark 4.6. In particular, the affine flag variety F�G is
connected.

The quotient L+G → Gk induces maps F�G = LG/L+G → [Spec k/L+G] →
[Spec k/Gk] to the respective quotient stacks. Passing to Picard groups we obtain

X∗(Gk) ∼= X∗(L+G) → Pic(F�G) (4.11)

Here, the first isomorphism holds because the kernel of L+G → Gk is pro-unipotent.
The Picard groups of the quotient stacks are the respective character groups because
giving a line bundle on such a stack is the same as giving a 1-dimensional representation
of the group, that is, a character.
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Lemma 4.10 The group Pic([LG\F�G]) of isomorphism classes of line bundles on
F�G equipped with an LG-equivariant structure naturally identifies with X∗(Gk) via
the induction map

μ �→ L(μ) := LG ×L+G Oμ, (4.12)

where Oμ is the equivariant line bundle on L+G attached to μ.

Proof This is immediate from the isomorphisms in (4.11): the inverse to the induction
map is given by pullback of LG-equivariant line bundles to the origin ofF�G , noticing
that they carry an action of L+G, that is, [LG\F�G] = [Spec k/L+G] in termsof (étale)
stacks. 
�

We now pass to perfections in order to make the map (4.11) explicit, compare
Corollary 4.9. So choosing any presentation of LG by affine schemes, we denote
by LGpf the colimit of the perfections of the constituents. As k is perfect, we can
equivalently use the relative Frobenius over k to form LGpf , so it is naturally an
ind-affine k-group ind-scheme.

After perfection, we deduce from Lemma 4.10 and Eq.4.11 the homomorphism

X∗(Gk)[p−1] → Pic(F�
pf
G ), (4.13)

whose image identifies with the line bundles admitting an LGpf -equivariant structure.
In order to explicitly describe (4.13), we fix the standard basis εi = (0, . . . , 1, . . . , 0)
of Pic(F�

pf
I ) ∼= ⊕sZ[p−1] (see Corollary 4.9 for G = I being the Iwahori). It will be

convenient for us to fix a certain enumeration of the simple reflections.

Lemma 4.11 There exists a simple reflection s0 such that the unique standard maximal
parahoricG0 with s0 /∈ WG0 satisfies the following: the reductive quotient of the special
fiber G0,k is simply connected and its root system equals the non-multipliable roots of
�G.

Proof For any positive simple affine root αs in the affine root system
G in the sense of
[42, Definition 4.3.4] associated with a simple reflection s, let as ∈ �G be the gradient
of αs . For any enumeration s0, . . . , sn of the simple reflections, we write ai := asi for
i = 0, . . . , n. We claim that there exists a choice of enumeration such that the ai for
i > 0 form a basis of �nm

G , the sub-root system of non-multipliable roots. In order to
see that this is possible, we consider the folowing cases: either�G is reduced, and this
amounts to the choice of a special vertex in the fundamental alcove not fixed by s0; or
�G is not reduced, and we need to ensure the existence of special vertices which are
not extra special in the sense of [42, Proposition 1.5.39], which can be verified in [42,
Table 1.5.51]. From now on, we fix such an enumeration and claim that the standard
maximal parahoric G0 attached to s0 satisfies the conditions in the lemma.

In what follows, we canonically identify the character and cocharacter groups of
the K -split torus S with those of the special fiber Sk of its connected Néron O-model
S. Note that Sk defines a maximal split torus of the reductive quotient of G0,k , because
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k is algebraically closed. By construction, the ai for i > 0 define roots of the reductive
quotient of G0,k . In particular, the coroots a∨

i for i > 0 (which are non-divisible) form
a basis of the dual root system �∨

G and hence of X∗(S) by our assumption on G. 
�
From now on, we fix an enumeration s0, s1, . . . , sn of the simple reflections with s0
being as in Lemma 4.11. With our numbering system above in terms of our choice
of special vertex, this has the following explicit description: for i > 0, ai is the non-
multipliable relative root whose reflection is si , and a0 is the negative of the highest
multipliable relative root.

Lemma 4.12 Let a∨
i ∈ X∗(S) be the coroot associated to the root ai as defined above.

Under the isomorphism (4.10), the map (4.13) is given by

μ �→
∑

〈a∨
i , μ〉εi , (4.14)

where the sum runs over all i = 0, . . . , n with si /∈ WG . Thus, (4.13) is injective and
has cokernel free over Z[p−1] of rank 1.

Proof Let Pi be the minimal standard parahoric such that L+Pi/L+I = Ssi . The
reductive quotient of the special fiber of Pi has simply connected cover isomorphic
to SL2 with positive coroot a∨

i . Therefore, the pullback to Spf
si of the equivariant line

bundle L(μ) attached to a weight μ ∈ X∗(S)[p−1] ∼= X∗(Ik)[p−1] is isomorphic to
O(〈a∨

i , μ〉), hence (4.14) holds. It is well-known from the theory of algebraic groups
that X∗(Gk) is a direct summand of X∗(S), comparewith [14, Corollary A.2.7].Hence,
to deduce injectivity of (4.13) and freeness of its cokernel, we may and do assume that
G = I is the Iwahori. Due to the fact that Sk identifies with a maximal torus in the
reductive quotient of G0,k , which is simply connected with roots �nm

G , the coroots a∨
i

for i > 0 form a basis of X∗(S). So its dual basis ωi form a basis of X∗(S), and thus
(4.14) admits a section. Finally, to see that the cokernel has rank 1 for arbitrary G, we
proceed as follows. First, we notice that for any i = 0, . . . , n, the set a j for j �= i
forms a basis of X∗(S)Q, because otherwise the affine reflections s j for j �= i would
have a positive-dimensional intersection in A (G, S). Suppose WG contains exactly
m < n + 1 many simple reflections and notice that the associated relative roots are
still linearly independent in X∗(S)Q by our previous observation. Let Sder

k denote the
maximal torus of the derived subgroup of Gred

k and notice that X∗(Sder
k ) has rank m.

We deduce that the cokernel X∗(Gk)Q of X∗(Sder
k )Q → X∗(S)Q has rank n − m,

whereas Pic(F�
pf
G ) has rank n + 1 − m by Eq.4.10. 
�

Using that (4.13) is injective and has free cokernel of rank 1 (see Lemma 4.12), we
construct a homomorphism

Pic(F�
pf
G ) → Z[p−1], L �→ cL, (4.15)

called the central charge homomorphism, uniquely characterized by the following
properties: its kernel is X∗(Gk)[p−1]; it factors through Pic(F�

pf
G ) → Pic(F�

pf
I ); for

G = I the standardZ-lattice⊕sZ ⊂ ⊕sZ[p−1] ∼= Pic(F�
pf
I ) (see Corollary 4.9) maps
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onto Z ⊂ Z[p−1], preserving positive degrees. Please note that this map is just the
Z[p−1]-linearization of the usual central charge as defined in [72, Eq. (2.2.3)]. The
only reason we defined it in the perfect setting is because we have not yet proved The-
orem 4.1, so we do not control the Picard group of the F�G , but only of its perfection.
We remark that the homomorphism (4.15) is surjective when G = I is the Iwahori,
but usually not for general parahorics, see [72, Sect. 2.2, page 12].

Lemma 4.13 Let ωi ∈ X∗(S) for i = 1, . . . , n be the dual basis to a∨
i . Under the

isomorphism (4.10), the map (4.15) is given by

(λi ) �→ λ0 −
∑

i>0

〈a∨
0 , ωi 〉λi , (4.16)

where we use the convention that λi = 0 whenever si ∈ WG . In particular, the
coefficients 1 and −〈a∨

0 , ωi 〉 are the numbers attached in [41, Sect. 6.1] to the vertices
of the dual affine Dynkin diagram of G.

Proof The proof of Lemma 4.12 shows thatL(ωi ) is the image of 〈a∨
0 , ωi 〉ε0+εi under

the bijection (4.10). Hence, we get c(εi ) = −〈a∨
0 , ωi 〉c(ε0). So c(⊕sZ) ⊂ Zc(ε0) and

by our choice of normalization c(ε0) = 1, thus c(εi ) = −〈a∨
0 , ωi 〉 for i > 0.

Finally, for the comparison with Kac–Moody theory, this can be seen by inspect-
ing [41, Theorem 4.8, Tables Aff 1-3] or the construction of the central charge for
untwisted and twisted Kac–Moody algebras, see [41, Theorems 7.4 and 8.3]. Alterna-
tively, we may observe that these coefficients are combinatorial data that do not really
depend on the arithmetic properties of G, so we may assume the latter to be tamely
ramified, in which case F�G identifies with a Kac–Moody flag variety, see [55, 9.h
and Proposition 10.1] and also [49, Annexe A]. 
�

Recall that for G = GLn we have an ample line bundle Ldet = O(1) on F�GLn

such that c(Ldet) = 1. Pulling it back along the adjoint representation ad : F�G →
F�GL(LieG), we get an ample line bundle Lad on F�G whose central charge can still be
determined:

Lemma 4.14 The central charge c(Lad) of the adjoint line bundle is equal to 2h∨,
where h∨ is the dual Coxeter number of the split form of G.

Proof We invoke [72, Lemma 4.2] at Iwahori level, which shows that Lad has degree
2 when restricted to every Ssi , and which does not use any tameness assumptions. But
it is well-known that the sum 1 − ∑〈ωi , a∨

0 〉 equals the dual Coxeter number. For
general parahoric level, there is a reduction step in the remaining paragraphs of the
proof of [72, Proposition 4.1] that follow the Iwahori lemma cited above. 
�

A key property of (4.15) is its constancy along the fibers of Beilinson–Drinfeld
Grassmannians, and we extend the results [37, Lemma 18, Remark 19] and [72,
Proposition 4.1, Corollary 4.3] from tamely ramified groups to general reductive
groups as follows. Let GrG → Spec(O) be the Beilinson–Drinfeld Grassmannian,
see [64, Definition 2.3] and [65, Sect. 0.3] for a definition independent of auxiliary
choices. Then GrG → Spec(O) is an ind-projective ind-scheme, its generic fiber
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GrG,K is equivariantly isomorphic to the affine Grassmannian GrG formed using an
additional formal parameter [65, Sect. 0.2], whereas its special fiber GrG,k is equal
to F�G . Looking ahead to the proof of Lemma 4.15 below, we note that the line bun-
dle Lad above extends to a line bundle on GrG , by the same construction (use [64,
§2.5]); we denote the extension also by Lad. By our assumptions on the group, we can
write G = ResL/K G0 for some finite, separable field extension L/K and some abso-
lutely almost simple, simply connected reductive L-group G0. Given a scheme X , let
Pic(X)Q denote the rationalized Picard group of X . For an ind-scheme X , we define
Pic(X)Q as the limit of the Pic(Xi )Q along a presentation (in all cases considered in
this paper, this will match the Q-localization of Pic(X)).

Lemma 4.15 The following properties hold:

(1) The map Pic(GrG)Q → Pic(F�G)Q is surjective.
(2) Every L ∈ Pic(GrG)Q has geometric generic fiber isomorphic to O(cLk ), the

cLk -th tensor power of �[L:K ]O(1) on GrG,K̄
∼= ∏

[L:K ] GrG0,K̄ .

Proof There is a natural map GrG → [Spec k/Gk] to the classifying stack of Gk-
bundles over k, given by forgetting the modification and then restricting the torsor
to the subscheme defined by the principal ideal t . This map factors the map F�G →
[Spec k/Gk] (compare Eq.4.11) under the identification GrG,k = F�G . Passing to
Picard groups, we get maps X∗(Gk) → Pic(GrG) → Pic(F�G) whose composition
is (4.11). After rationalizations, the maps are injective. Further, Lad and ker(c)Q =
X∗(Gk)Q generate the Q-vector space Pic(F�G)Q by Corollary 4.9. This shows (1).

For (2), we start by noticing that its conclusion is satisfied by the image of
X∗(Gk)Q → Pic(GrG)Q. Indeed, the map GrG,K̄ → [Spec k/Gk] factors through
the trivial torsor by Beauville–Laszlo gluing, so it must induce the zero map on the
rationalized Picard group. Moreover, the conclusion holds as well forLad defined over
GrG again by pulling backLdet along the adjoint map to the Lie algebra. Indeed, on the
geometric generic fiberGrG,K̄

∼= ∏

[L:K ] GrG0,K̄ , the line bundleLad becomes isomor-
phic toO(2h∨), where h∨ is the dual Coxeter number of G0, by Lemma 4.14 applied
to each of the factors G0. On the special fiber F�G , we also know by Lemma 4.14 that
cLad = 2h∨.

Since the previous explicitly given rationalized line bundles generate Pic(F�G)Q
as seen already, we may and do assume that our abstract rationalized line bundle L
on GrG has trivial special fiber Lk = O. Let μ be a conjugacy class of cocharacters
in G K̄ with reflex field E ⊃ K . Let MG,μ be the orbit closure of SG,μ over OE , see
Definition 5.1, and suppose that μ is supported on exactly one almost simple factor
of G K̄ . Then, Pic(SG,μ,K̄ )Q is 1-dimensional by Lemma 4.8. Assume for the sake of
contradiction that LK̄ is anti-ample on SG,μ,K̄ (if not, take its inverse). It is therefore

equal to the restriction of L−q
ad,K̄

for some q ∈ Q>0. Replacing L by its product with

Lq
ad, wemay nowensure thatLk is ample andLK̄ is trivial onGrG,μ,K̄ . This contradicts

openness of the ample locus of L on MG,μ, see [25, Corollaire 9.6.4]. In particular,
we conclude that LK̄ must be trivial on SG,μ,K̄ . Letting μ run over all coweights with
irreducible support, we deduce from Corollary 4.9 that LK̄ is trivial. 
�
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Suppose we are given a map f : G1 → G2 of parahoric O-models of simply con-
nected, almost simple K -groups G1 and G2. We have an induced pull-back map

f ∗ : Pic(F�
pf
G2

) → Pic(F�
pf
G1

) (4.17)

that sends equivariant line bundles with respect to LGpf
2 to those with respect to LGpf

1 .
In particular, we get a homomorphism of cokernels defined by their central charges
and it follows that c1( f ∗L) = d( f )c2(L) where d( f ) ∈ Z≥0 is independent of L and
ci denote the central charges of the respective Picard groups. Here, the non-negativity
of d( f ) holds because pullback preserves semi-ampleness, and d( f ) is an integer
because the map of Picard groups also exists on the non-perfected affine flag varieties.

From the constancy of the central charge we draw the following consequence:

Corollary 4.16 Let L/K be a finite separable extension and consider the natural map

f : G → ResOL/OK (G̃), (4.18)

extending the unit of adjunction for ResL/K , where G̃ is the associated parahoric
OL-model of GL induced by the map B(G, K ) → B(G, L). Then d( f ) = [L : K ].
Proof Thanks to Lemma 4.15, we can read off the integer d( f ) from the map of affine
Grassmannians GrG → GrResL/K GL after base changing to K̄ . But then ResL/K GL

splits over K̄ as a product of [L : K ]-many copies of G K̄ , so O(1) = �[L:K ]O(1)
pulls back to O([L : K ]) as desired. 
�

4.1.4 The Demazure variety is stably compatibly F-split

In order to finish the proof of Theorem 4.1, it remains to show that the assumption
of Lemma 4.5 holds, that is, the Demazure variety Dẇ is stably compatibly F-split
with Dv̇ for all v̇ of colength 1 in ẇ. By Remark 4.6, we may and do assume that G
is simply connected, absolutely almost simple and that G = I is the Iwahori group
scheme. As in [55, Section 8] (for proving F-splitness) and [11, Section 5] (for proving
stable F-splitness), we aim to apply the Mehta–Ramanathan splitting criterion, see
[4, Theorem 5.3.1] and [7, Proposition 1.3.11], to Dẇ together with its divisors Dv̇ .
We need the following result for this.

Lemma 4.17 There exists a unique line bundleLcrit ∈ Pic(˜F�G) such thatL⊗2
crit � Lad.

Proof We first prove uniqueness. Note that f ∗ : Pic(˜Sw) → Pic(Dẇ) is injective as
f∗ f ∗L = L by the projection formula and by f∗ODẇ

= O
˜Sw
, see (4.5) for the latter.

By Lemma 4.7, we see that Pic(˜Sw) is torsion-free for allw ∈ Waf and so is Pic(˜F�G).
Hence, the map π∗ : Pic(˜F�G) → Pic(F�

pf
G ) is injective. In particular, Lad admits at

most one square root.
Next, we prove existence. Recall that Lad restricts toO(2) on every Ss , so it admits

a square root inside Pic(F�
pf
G ) of central charge equal to h∨, see Corollary 4.9 and
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Lemma 4.14. There are inclusions of Z-lattices

Pic(˜F�G) ⊂ ⊕sZ ⊂ ⊕sZ[p−1] = Pic(F�
pf
G ). (4.19)

(Note that the lattices are in fact equal, which only follows after finishing the proof of
Theorem 4.1.) The cokernel of the inclusion is p-power torsion. If therewere no square
root Lcrit on ˜F�G , then the element (1, . . . , 1) ∈ ⊕sZ would be a non-trivial 2-torsion
point of the cokernel Pic(F�

pf
G )/Pic(˜F�G), which yields a contradiction unless p = 2.

So, Lcrit exists for whenever p > 2.
Now, let p = 2. Informally speaking, we aim to show that Pic(˜F�G) is large enough

as follows. Lemmas 4.10 and 4.12 implies that ker(c)∩⊕sZ already lies in Pic(˜F�G).
Since c(1, . . . , 1) = h∨, it is enough to prove the inclusion

c(Pic(˜F�G)) ⊃ h∨Z, (4.20)

where we recall the normalization of c from (4.15). In order to verify (4.20), let e ≤ 3
denote the degree of the smallest extension L/K whose Galois hull ˜L/K splits G.
The flag variety of the corresponding Iwahori model ˜G over O

˜L admits a line bundle
with central charge 1 by [20, Theorem 7]. By Corollary 4.16, we obtain the inclusion
e!Z ⊂ c(Pic(˜F�G)). Looking at the classification of [6, Planches], we see that e!
always divides h∨, unless G = SU2n+1 is an odd-dimensional unitary group.

Finally, if G = SU(V , q) is a unitary group, where V is a L-vector space and
q : V → L is a semi-regular L-hermitian form, we follow the implicit argument that
had already been covered in [72, Lemma 8.3] for p > 2, but now for all primes.
Namely, in Lemma 4.18 below, we will consider the natural map of K -groups

SU(V , q) → SL(K V ) (4.21)

where K V is V regarded as a K -vector space, and construct a certain non-degenerate
quadratic form r : K V → K such that the above map factors through SO(K V , r).
Notice this solves our problem of constructing a line bundle L satisfying c(L) = 1,
since the determinant has a square root given by the Pfaffian, see [2, Sect. 4.2] and
especially [2, Sect. 4.2.16] when p = 2. 
�

The following lemma is used towards the end in the proof of Lemma 4.17.

Lemma 4.18 Let L/K be a quadratic extension, V a L-vector space and q : V → L a
semi-regular L-hermitian form. There is a non-degenerate quadratic form r : K V →
K such that SU(V , q) lies inside SO(K V , r).

Proof If p > 2, this is a well-known result in the theory of L-sesquilinear and K -
bilinear forms, see [58, Sect. 1.2.2], so from now on we assume p = 2.

Decomposing into orthogonal summands, we may assume either

(V , q) = (L, x �→ N (x)) (4.22)
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is one-dimensional semi-regular, or

(V , q) = (L2, (x, y) �→ xσ(y) + σ(x)y) (4.23)

is a two-dimensional regular hermitian hyperbolic plane.
In the first case, taking

r = tr(λq) : (x1, x2) �→ x21 + x1x2 + N (λ)x22 , (4.24)

where tr(λ) = 1, gives us a regular symmetric K -hyperbolic plane, as 1 − 4N (λ) =
1 �= 0 as p = 2. As for the second case, the quadratic form

r = tr(λq) : (x1, x2, y1, y2) �→ x2y1 + x1y2 (4.25)

clearly decomposes into the orthogonal sum of two regular symmetric K -hyperbolic
planes. 
�
Remark 4.19 The construction of Lcrit on the seminormalized affine flag variety is
used in order to apply the Mehta–Ramanathan criterion. It would be interesting to find
a uniform proof for all G and p. Recall that [20, Theorem 7] provides a construction
for split G, which is extended in [49, Corollary 4.3.10] for tame G, using negative
loops groups that seem, however, not to exist for wildly ramified G. Also, the work
[55] refers to a construction in [23, Proposition 3.19] for G = GLn , which we were
not able to generalize to other groups.

Now, we are ready to finish the proof of Theorem 4.1. Let f : Dẇ → ˜Sw be
the Demazure resolution, compare (4.5). The anti-canonical line bundle admits the
formula

ω−1
Dẇ

= O(∂ Dẇ) ⊗ f ∗Lcrit (4.26)

by the argument of [7, Proposition 2.2.2], and the fact that Lcrit has degree 1 on every
projective line Ss . To apply the Mehta–Ramanathan criterion, see [4, Theorem 5.3.1]
and [11, Proof of Theorem 5.8], we must produce a section of the (q − 1)-th power
of Lcrit (for some power q of p) avoiding the origin (i.e., the intersection of all the
divisors Dv̇). Note that Lcrit is an ample line bundle, because so is its square Lad. We
deduce that any sufficiently large power of Lcrit is very ample on ˜Sw, and therefore
f ∗Lq−1

crit will be basepoint free for some sufficiently large power q � 0 of p.

4.1.5 Picard groups of seminormalized Schubert varieties

Using the already proven Theorem 4.1, we can actually upgrade the previous results
on Picard groups to seminormalized Schubert varieties.

Lemma 4.20 There is an isomorphism

Pic(˜Sw)
∼=−→

⊕

s

Z, L �→ (deg(L|Ss ))s (4.27)
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where the sum runs over all s ∈ {s1, . . . , sd} with s /∈ WG .

Proof Recall the notation f : Dẇ → ˜Sw for the Demazure resolution from (4.5)
and the computation of Pic(Dẇ) from Lemma 4.7. As explained in Lemma 4.8, the
pullback map Pic(˜Sw) → ⊕

s Z is injective. For surjectivity, let (λs) ∈ ⊕sZ and
denote by D = D(λs) the corresponding line bundle on Dẇ.

We show that L := f∗D is a line bundle, and that the canonical map f ∗L → D
is an isomorphism. As in the proof of Lemma 4.5 we factor f into successive partial
Demazure resolutions, each having fibers of dimension at most 1. By induction we
replace f by one of those maps g : Ss×̃˜Sv → ˜Sw. By the proof of Lemma 4.8,
we already know that the restriction of D to the fibers of g is trivial after passing
to perfections. By the proof of Lemma 4.5, we know that the fibers of g are either
Spec(κ(x)) orP1

κ(x), so their Picard groups are torsion-free andD has trivial restriction

to all fibers of g. By Theorem 4.1, our varieties have rational singularities,1 so [47,
Theorem 12.1 (i)] applies to show that D is Zariski locally trivial on the base. Using
rational singularities again shows g∗D is a line bundle, and that g∗L → D is an
isomorphism. 
�
Corollary 4.21 There is an isomorphism

Pic(˜F�
0
G)

∼=−→
⊕

s

Z, L �→ (deg(L|Ss ))s (4.28)

where ˜F�
0
G denotes the neutral component and the sum runs over all simple reflections

s ∈ Waf\WG .

Proof This is immediate from Lemma 4.20, as Pic(˜Sw) is again independent of w for
sufficiently large lengths by (4.27). 
�

Lemma4.20 admits the following slight generalization (see Proposition 4.23)which
is used in Sect. 5. We first need an elementary lemma:

Lemma 4.22 Finite unions of seminormalized Schubert varieties in ˜F�G are seminor-
mal and stable under finite intersections.

Proof Due to the compatible F-splitting of seminormalized Schubert varieties from
Theorem 4.1, their finite union (and, finite intersection) is again F-split, hence F-
injective (and reduced) and therefore seminormal by [67, Theorem 4.7]. In particular,
if Sw1 , . . . , Swn ⊂ F�G are Schubert varieties, then the maps ∪n

i=1
˜Swi → ∪n

i=1Swi

and ∩n
i=1

˜Swi → ∩n
i=1Swi are universal homeomorphisms and induce isomorphisms

on all residue fields, and so identify the respective sources as the seminormalizations
of their targets. The lemma follows. 
�

1 Strictly speaking, Theorem 4.1 only refers to the ˜Sw and not their partial Demazure resolutions, but the
proof given in the previous section proceeds by descent from Dẇ , so those also have rational singularities.
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Proposition 4.23 Letw1, . . . , wn ∈ ˜W be right WG-minimal. There is an isomorphism

Pic

(

n
⋃

i=1

˜Swi

)

∼=−→
⊕

s

Z, L �→ (deg(L|Ss ))s (4.29)

where the sum runs over all s ∈ ˜W\WG of length 1 such that s ≤ wi for some
i = 1, . . . , n.

Proof Without loss of generality, we may and do assume that
⋃n

i=1
˜Swi is connected

and contained in the neutral component ˜F�
0
G . Next, we proceed by induction on n ≥ 1.

For n = 1, this is Lemma 4.20. For the induction step, let X = ∪n−1
i=1

˜Swi and Y = ˜Swn

viewed as closed subschemes of ˜F�G . The sequence of sheaves of abelian groups on
˜F�G

1 −→ ιX∪Y ,∗O×
X∪Y −→ ιX ,∗O×

X × ιY ,∗O×
Y

(a,b) �→ab−1

−→ ιX∩Y ,∗O×
X∩Y −→ 1

(4.30)

is exact as is easily checked on stalks, where ι(-) denotes the respective closed immer-
sion into ˜F�G . Since X ∩ Y is reduced (because seminormal) by Lemma 4.22,
we see H0(X ∩ Y ,O×

X∩Y ) = k× by connectedness and projectivity of X ∩ Y .
Hence, the long exact (Zariski) cohomology sequence associated with (4.30) iden-
tifies Pic(X ∪ Y ) = H1(X ∪ Y ,O×

X∪Y ) with Pic(X) ×Pic(X∩Y ) Pic(Y ). One easily
deduces (4.29) which finishes the induction step. 
�

4.1.6 Vanishing of higher coherent cohomology of seminormalized Schubert
varieties

Another consequence of Theorem 4.1 is the following result, to be used in Sect. 5
below:

Lemma 4.24 Let w1, . . . , wn ∈ Waf be right WG-minimal, and consider X =
∪n

i=1
˜Swi . Then H j (X ,OX ) = 0 for all j ≥ 1.

Proof By Lemma 4.22 finite unions of seminormalized Schubert varieties are stable
under intersections. Hence, a Mayer–Vietoris argument similar to that in Proposi-
tion 4.23 reduces the claim to the case n = 1. Consider the Demazure resolution
f : Dẇ → ˜Sw from (4.5). Now, ˜Sw has rational singularities by Theorem 4.1, so
H j (˜Sw,O

˜Sw
) = H j (Dẇ,ODẇ

) using R f∗ODẇ
= O

˜Sw
. Since Dẇ is an iterated P1

k-
bundle, the vanishing of higher cohomology follows by a straightforward induction
argument. 
�

4.2 Normality of Schubert varieties

In this subsection, we extend the normality theorem for Schubert varieties to some
wildly ramified groups. Previously, this was proved by Faltings for split groups, see
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[20, Theorem 8], and by Pappas–Rapoport for Weil-restricted tame groups, see [55,
Theorem 8.4]. These results were inspired by similar ones in Kac–Moody theory
found in [53], but we stress that wildly ramified groups are in principle unrelated to
that theory, compare with [49, Annexe A]. The prime-to-p hypothesis on the order of
π1(Gder) is essential, due to [32, Theorem 2.5].

Theorem 4.25 Under Hypothesis 2.1, all Schubert varieties Sw are normal if and only
if p does not divide the order of π1(Gder).

We need the following auxiliary lemma:

Lemma 4.26 If G is simply connected and satisfies Hypothesis 2.1, then F�G is
reduced.

Proof This is proven in [55, Proposition 9.9] for tamely ramified groups and extends
to wildly ramified groups under Hypothesis 2.1. We recall the proof for convenience,
following closely [55, Proposition 9.9].

By [32, Lemma 8.6], it is enough to show that every R-valued point x of F�G , with
R being Artinian and strictly Henselian, factors through the reduced locus. By the
Bruhat decomposition and formal smoothness of L+G, we can translate x such that it
is supported at the origin e ∈ F�G(k). After extending scalars, we may assume that
the residue field of R equals k. Moreover, we can use formal smoothness of L+G and
the fact that R is strictly Henselian to lift x to an R-valued point x̃ of LG supported at
the identity. This corresponds to an R((t))-valued point of G supported at the identity,
so it factors through the big cell C = U− × T × U+. We claim that x̃ is in the
subgroup generated by LU±(R). Since the ind-schemes LU± are reduced, they map
to (F�G)red. Hence, we may and do assume that x̃ ∈ LT . But T factors as a product
of induced tori indexed by its relative coroots, and thus we can further reduce to the
case when G has rank 1. Supressing the wildly ramified restrictions of scalars, then
either G = SL2 or SU3 and p �= 2 and the needed generation property is explicitly
calculated in the proof of [55, Proposition 9.3]. So x lies in the reduced locus, and the
lemma follows. 
�
Proof of Theorem 4.25 The seminormalization ˜Sw → Sw is proper and surjective,
hence an isomorphism if and only if it is a monomorphism (as Sw is reduced). So all
Schubert varieties Sw are seminormal (hence normal by Lemma 4.4) if and only if the
morphism of ind-schemes

˜F�G = colim˜Sw → colim Sw = (F�G)red ⊂ F�G (4.31)

is a monomorphism, or equivalently, its restriction to the neutral components is so.
Using this we prove the theorem as follows.

For the if clause, by [55, Sect. 6.a]wemayanddoassume thatG is simply connected,
absolutely almost simple and G is an Iwahori model. In this case, we claim that (4.31)
is an isomorphism. Now observe that by Proposition 2.6, we can find a smooth affine
W (k)[[t]]-group G with connected fibers lifting G, such that it becomes parahoric as
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well over K0[[t]] with K0 = W (k)[p−1]. Hence, (4.31) lifts to a morphism of W (k)-
ind-schemes

˜F�G → F�G, (4.32)

where the left side is the ind-normalization of the right side. Indeed, that this commutes
with base change to k is a consequence ofTheorem4.1 thanks to the vanishing of higher
coherent cohomology of the Demazure resolution, by an application of cohomology
and base change, compare with [20, page 52] and [24, Proposition 3.13]. Over K0,
we get an isomorphism by Kac–Moody theory, see [55, Sect. 9.f]. Integrally, we show
that the map is formally smooth around the origin, by virtue of an analogue of [20,
Lemma 10] or [55, Proposition 9.3]. This implies the claim by [20, page 53] or [55,
Sect. 9.g].

The only if part follows from the argument in [32, Sect. 2], because if p divides the
order of π1(Gder) then the kernel of Gsc → G is not étale. Hence, the induced mor-
phismF�Gsc → F�0G ⊂ F�G is not a monomorphism, where Gsc denotes the parahoric
O-model of Gsc induced by G. By Lemma 4.26, F�Gsc is reduced, so (4.31) factors on

neutral components as ˜F�
0
G

∼→ F�Gsc → (F�G)0red. Now, if (4.31) were a monomor-
phism, then F�Gsc → F�0G would be a monomorphism, which is a contradiction.


�

4.3 Central extensions of line bundles

In the theory of loop groups and their flag varieties, one is usually faced with the
obstacle that not every line bundle on F�G is LG-equivariant. However, this can
partially remedied by considering a certain universal central extension of LG that acts
on every line bundle of F�G . This is a recurrent theme in Kac–Moody theory, see [20,
page 54], [55, Remark 10.2] and [49, Corollary 4.3.11], and also admits an incarnation
for theWitt vector Grassmannian by [3, Proposition 10.3]. In order to properly explain
it, we need to use the geometric results of the previous subsections.

Given a line bundle L on F�G , we form the group functor on the category of k-
algebras R defined by

LG{L}(R) = {(g, α) | g ∈ LG(R), α : L ∼= g∗L}. (4.33)

We can now prove the following lemma:

Lemma 4.27 Suppose G is an almost simple, simply connected K -group satisfying
Hypothesis 2.1. Then, the pre-sheaf LG{L} defines a central extension of LG by
Gm,k in the category of ind-affine k-group ind-schemes. The association L �→ LG{L}
induces a group homomorphism

Pic(F�G) → Extcent(LG, Gm,k). (4.34)

with the same kernel as (4.15) restricted to Pic(F�G).

123



Singularities of local models

Proof Note that LG{L}(R) carries a natural group structure via (g1, α1) · (g2, α2) =
(g1g2, g∗

2α1 ◦ α2), thus having Gm,k(R) = {(1, c) | c ∈ R×} as a central subgroup.
We claim moreover that Gm,k(R) ⊂ LG{L}(R) is the kernel of the natural projection
to LG(R). In other words, we claim that the automorphism group Aut(LR) as a line
bundle on F�G,R equals R×. After tensoring with L−1, we may and do assume that
L = O. Thus, it suffices to show that H0(F�G,R,O) = R which is implied by
Lemma 4.26.

Next, we study the action of LG(R) on the Picard groups. Note that Pic(F�G,R) is
the direct sum of Pic(R) and Pic(F�G), since the Picard functor of the flag variety is
constant étale due to [43, Corollary 5.13] using Lemma 4.24. The action of LG(R) on
Pic(R) is trivial, and we claim that the same holds for the quotient Pic(F�G,R)/Pic(R).
ByTheorem4.25 and (4.28), that quotient is torsion-free andwemay check triviality of
the LG(R)-action on generators of the associated Q-vector space. A set of generators
is given by LG-equivariant line bundles, see Lemma 4.10, and the adjoint line bundle.
For an LG-equivariant line bundle, the claim is trivial and we even see directly that
LG{L} → LG splits and thus is the trivial extension. For the adjoint line bundle, one
sees that the difference

L−1
det · g∗Ldet = det(t−a R[[t]]n/gR[[t]]n) ∈ Pic(F�SLn ,R) (4.35)

for a � 0 is in the image of Pic(R), compare [20, page 43], so the same remains true
after pulling back to F�G,R .

We can use the previous paragraph to show that any R-valued point of LG lifts
along themap LG{L} → LG after we replace Spec R by a finite union of affine opens.
Indeed, we saw above that L and g∗L differ by an element of Pic(R) which can be
trivialized over an affine open Spec S ⊂ Spec R. Replacing R by S, we may assume
the existence of an isomorphism α : L ∼= g∗L, thereby producing a lift in LG{L}(S).
Letting Spec R run over sufficiently small affine opens of a presentation of LG, the
existence of lifts shows that LG{L} is representable by an ind-affine k-group ind-
scheme and that it is an extension of LG by Gm,k . Finally, it is clear that the kernel
of (4.34) consists of those L that admit an LG-equivariant structure, hence coincides
with the kernel of (4.15) after restricting the latter to Pic(F�G) thanks to Lemma 4.10.


�
The lemma implies that the image of (4.34) is a free Z-module of rank 1, see

Lemma 4.12. Identify the image with Z via the unique isomorphism sending ample
line bundles to positive integers.

Corollary 4.28 For any L ∈ Pic(F�G) with cL = 1, the resulting central extension

L̂G := LG{L} has the property that every line bundle on F�G admits a L̂G-
equivariant structure which is unique up to multiplication by k×.

Proof Using Lemma 4.10, the central charge induces a short exact sequence 0 →
Pic([LG\F�G]) → Pic(F�G)

c→ Z → 0. The choice of L provides a splitting. So the
corollary follows from the equality Aut(M) = k× for any line bundleM onF�G , see
the proof of Lemma 4.27. 
�
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5 Local models

In this final section, let O be a complete discretely valued ring with fraction field K
and perfect residue field k of characteristic p > 0. Let G be a reductive K -group, μ
a (not necessarily minuscule) geometric conjugacy class of cocharacters in G and G a
parahoric O-model of G. The reflex field E of μ is a finite separable field extension
of K with ring of integers OE and residue field kE .

Let Ŏ be the completed strict Henselisation of O with fraction field K̆ and alge-
braically closed residue field k̄. Let T be the centralizer of some maximal K̆ -split
torus S which is defined over K and contains a maximal K -split torus with apartment
containing the facet associatedwithG, see [9, Corollaire 5.1.12]. The connected Néron
model T of T is a closed subgroup scheme of G.

5.1 Equicharacteristic local models

Assume K = k((t)) is a Laurent series field with ring of integers O = k[[t]]. Let
us recall the definition of local models in equicharacteristic, which only depend
on the pair (G, μ) and not on additional auxiliary choices. Recall that we have
defined theBeilinson–DrinfeldGrassmannianGrG → Spec O before Lemma 4.15. Its
generic fiber is equivariantly isomorphic to the affine Grassmannian GrG → Spec K
whereas its special fiber is equal to the affine flag variety F�G → Spec k. Let
SG,μ ⊂ GrG ×Spec K Spec E be the Schubert variety attached to μ.

Definition 5.1 Let MG,μ denote the flat closure of SG,μ inside the Beilinson–Drinfeld
Grassmannian GrG,OE := GrG ×Spec O Spec OE . We denote by ˜MG,μ its seminormal-
ization [70, 0EUK].

Remark 5.2 The formation of orbit closures and their seminormalizations are functo-
rial in the following sense. Amorphisms of pairs (G, μ) → (˜G, μ̃) is amap of O-group
schemes G → ˜G which maps μ into μ̃ under the induced map of reductive K -groups
G → ˜G in the generic fiber. Any such map of pairs induces a map MG,μ → M

˜G,μ̃

commuting over Spec OE → Spec O
˜E where ˜E denotes the reflex field of μ̃. By

functoriality of seminormalizations [70, Tag 0EUS], we get a map ˜MG,μ → ˜M
˜G,μ̃

commuting over the map of orbit closures.

In order to describe the special fiber of the schemes fromDefinition 5.1,we recall the
admissible locus [54, Sect. 4.3]. TheKottwitz homomorphism induces an isomorphism
X∗(T )I ∼= T (K̆ )/T (Ŏ), λ̄ �→ λ̄(t) where the source denotes the coinvariants of the
cocharacter lattice X∗(T ) under the inertia subgroup I of the absolute Galois group
of K . Note that the isomorphism does not depend on the choice of uniformizer t .

Definition 5.3 The admissible locus AG,μ is the reduced kE -subscheme of F�G,kE

given by the kE -descent of the union of k̄-Schubert varieties Sλ̄(t), where λ ∈ X∗(T )

runs through the (finitely many) representatives of μ and where λ̄ ∈ X∗(T )I denotes
its image in the coinvariants under I . We denote by ˜AG,μ its seminormalization.

Note that AG,μ does not depend on the choice of the maximal torus T as above.
Further, AG,μ is geometrically connected and, by [29, Theorem 4.2], its irreducible
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k̄-components are the Schubert varieties Sλ̄(t) where λ runs through the K̆ -rational
representatives of μ in X∗(T ).

Let us now discuss finer geometric properties. It was shown in [31, Theorem 6.12]
that the reduced special fiber of MG,μ coincideswith AG,μ, butwe shall only need touse
the inclusion of AG,μ in the reduced special fiber, already proved in [64, Lemma 3.12].
Note that (˜AG,μ)k̄ = ∪λ

˜Sλ̄(t) by Lemma 4.22, where λ ranges over the K̆ -rational
representatives of μ in X∗(T ). Since the F-split property for proper schemes can be
descended from k̄ to kE , ˜AG,μ is F-split. It identifies moreover with the admissible
locus A

˜G,μ̃ associated with any z-extension ˜G of G with simply connected derived
group, and any lift μ̃ of μ, by Theorem 4.25, at least when Hypothesis 2.1 holds.

Now, we may state our main result on the singularities of local models.

Theorem 5.4 Under Hypothesis 2.1, the local model ˜MG,μ is Cohen–Macaulay, has
F-rational singularities (and thus is pseudo-rational), and has reduced special fiber
equal to the seminormalized admissible locus ˜AG,μ.

Proof The key step of the proof is showing that the special fiber is reduced and equal to
˜AG,μ from which the other properties follow by using the F-splitness of ˜AG,μ; in fact,
we shall prove that ˜MG,μ has F-rational singularities. This part of the proof essentially
follows from [72, Sect. 4.2], relying on Theorem 4.25 for wildly ramified groups. Here
is an outline. By using faithfully flat descent of F-rationality [15, Proposition A.5] we
may reduce to the case O = Ŏ , so G is quasi-split.

First, we show that for any finite field extension ˜E/E the base change ˜MG,μ ⊗OE

O
˜E is normal with reduced special fiber equal to ˜AG,μ as follows. Passage to the

adjoint group induces a map of pairs (G, μ) → (Gad, μad) where Gad is the parahoric
associated with Gad andμad is induced byμ under G → Gad. The correspondingmap
˜MG,μ → ˜MGad,μad ⊗OEad

OE is a universal homeomorphism inducing isomorphisms
on residue fields by [26, Corollary 2.3 and its proof], thus an isomorphism if the target
is (semi-)normal. Without loss of generality, we reduce to the case where G is adjoint.
A similar argument shows that the formation of ˜MG,μ commutes with products in
G, so we first assume that G is adjoint and simple, so G = ResL/K (G0) for a finite
separable field extension L/K (necessarily totally ramified) and an absolutely simple
L-group G0.

The simply connected cover Gsc → G induces a universally closed and univer-
sally injective morphism ι : GrGsc → GrG which gives on generic fibers the universal
homeomorphism GrGsc → Gr0G onto the neutral component. We consider the trans-
late t−1

μ MG,μ ⊂ ι(GrGsc,OE ), where tμ is an OE -valued point of LT lifting the
corresponding section of GrT , and consider the unique reduced closed subscheme
MGsc,μ ⊂ GrGsc,OE with the topological space ι(MGsc,μ) being the same as the transla-
tion. Likewise, we denote by AGsc,μ (respectively, SGsc,μ) the tμ-translated admissible
locus insideF�Gsc (respectively, GrGsc,E ). These are also unions of translates of Schu-
bert varieties for some choice of Iwahori group scheme. The induced finite universal
homeomorphism MGsc,μ → MG,μ factors on generic fibers as SGsc,μ

∼= ˜SG,μ → SG,μ

(hence is birational).
We will prove that for all n ≥ 1, we have

dimk H0(AGsc,μ ,L⊗n
ad ) = dimE H0(SGsc,μ,L⊗n

ad ), (5.1)
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where Lad denotes the pullback of the determinant line bundle along the adjoint rep-
resentation, compare Lemma 4.14. But before we do so let us explain how it implies
that ˜MG,μ has special fiber equal to ˜AG,μ. By [64, Lemma 3.12], we have an inclusion
of AGsc,μ in the reduced special fiber of MGsc,μ. Since Lad is a relatively ample line
bundle on MGsc,μ, (5.1) implies that the special fiber of MGsc,μ is reduced and equal
to AGsc,μ. By Serre’s criterion (see [60, Proposition 9.2]) it follows that MGsc,μ is
normal. Consequently, as the map MGsc,μ → MG,μ induces an isomorphism on every
residue field, it identifies with the seminormalization, so induces an isomorphism
MGsc,μ

∼= ˜MG,μ. Using the normality of Schubert varieties for simply connected
groups in Theorem 4.25 we then see that the special fiber of ˜MG,μ is ˜AG,μ.

It remains to prove (5.1). For this, consider the W (k)[[t]]-lift Gsc of Gsc provided by
Proposition 2.6 under our Hypothesis 2.1, which holds for �Gsc . Consider the affine
flag scheme F�Gsc over W (k). It admits the flat, closed subscheme AGsc,μ whose
generic fiber is AG′

sc,μ
′ with G′

sc = Gsc ⊗ K0[[t]] and μ′ corresponding to μ using
(2.11), and whose special fiber contains AGsc,μ. As explained in the last paragraph of
the proof of [49, Théorème 5.2.1], one deduces from the combinatorics of Schubert
varieties and their compatible F-splitness an equality

dimk H0(AGsc,μ,L⊗n
ad ) = dimK0 H0(AG′

sc,μ
′ ,L⊗n

ad ), (5.2)

for all n ≥ 1. Note that (5.2) uses again the normality of Iwahori Schubert varieties
for simply connected groups (Theorem 4.25) to deduce their F-splitness (Theo-
rem 4.1). Likewise, the analogue of (5.2) also holds for SGsc,μ versus SG ′

sc,μ
′ with

G ′
sc = G′

sc ⊗ K0((t)). Appealing now to the coherence theorem of [72] for the group
G ′

sc in characteristic 0 (those are always tamely ramified) finishes the proof of (5.1).
Thus, ˜MG,μ is normal and has reduced special fiber which is equal to ˜AG,μ, and the
same holds for the base change ˜MG,μ ⊗OE O

˜E by an application of Serre’s criterion
as the generic fiber is geometrically normal.

Since, as noted above, the formation of ˜MG,μ commutes with products in G, it
follows that for general G the special fiber of ˜MG,μ is reduced and is equal to ˜AG,μ.
We now prove the other parts of the theorem by using results from the theory of
F-singularities, see Sect. 3. Since ˜SG,μ,K̄

∼= Ssc
G,μ,K̄

is an Iwahori Schubert variety

for the simply connected, split reductive group Gsc,K̄ , it is Cohen–Macaulay and
even F-rational by [11, Theorem 1.4]. (Alternatively, these properties of ˜SG,μ,K̄ also

follow directly from Theorem 4.1.) Hence, so is˜SG,μ by faithfully flat descent of [15,
Proposition A.5]. We already know that ˜AG,μ is F-split by Theorem 4.1, so it is F-
injective in particular.We also note that all rings and schemes involved in our argument
are F-finite since k is algebraically closed. Then Lemma 3.2 implies that ˜MG,μ is F-
rational, so pseudo-rational by Lemma 3.4 and in particular Cohen–Macaulay. 
�
Remark 5.5 There is an equality ˜MG,μ = MG,μ if and only if ˜AG,μ = AG,μ and
˜SG,μ = SG,μ. This is ensured, for instance, when p � |π1(Gder)|. If p | |π1(Gder)|,
then the equality still holds when μ̄ ∈ X∗(T )I is minuscule with respect to the
échelonnage roots and the closure of f contains a special vertex; see the proof of [32,
Proposition 9.1]. Otherwise the equality is false for infinitely many values of μ, see
[32, Corollary 9.2].
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Remark 5.6 Cass has proved somewhat stronger properties of the singularities of ˜MG,μ

when the group G is a constant split reductive group and p > 2, see [10, Theorem 1.6].

Remark 5.7 There is an alternative proof for the reducedness of the special fiber of
˜MG,μ via perfectoid geometry, see [22, Lemma 1.2, Theorem 1.3], without the need
for Hypothesis 2.1. We stress that it does not directly imply that the special fiber
is seminormal and F-split as in Theorem 5.4, upon which the last sentence of [22,
Corollary 1.4] actually relies. On the other hand, combining the results of [22] with
Theorem 4.25 immediately yields an identification between ˜AG,μ and the special fiber
of ˜MG,μ, compare with the proof of [22, Theorem 2.1] or the discussion surrounding
[1, Conjecture 7.25].

We can also deduce the following facts on the Picard group of the local models.

Corollary 5.8 Under Hypothesis 2.1, the following properties hold:

(1) The restriction map Pic( ˜MG,μ) → Pic(˜AG,μ) is an isomorphism.
(2) Let Gi for i = 1, . . . , m be an enumeration of the simple factors of Gad such

that the image μ̄i of μ in the group X∗(Ti )I attached to Gi is non-zero. Then the
restriction map

m
∏

i=1

Pic(˜F�
τi
Gi

) → Pic(˜AG,μ) (5.3)

is an isomorphism, where Gi is the associated parahoric O-model of Gi and the
superscript τi indicates the connected component attached to μi .

(3) There is a commutative diagram:

Pic( ˜MG,μ) Pic(˜SG,μ)

Pic(˜AG,μ)
∏m

i=1 Pic(˜SGi ,μi )

∏m
i=1 Pic(˜F�

τi
Gi

) Zm,

∼ ∼

∏m
i=1 degi∼

∏m
i=1 ci

(5.4)

where the maps of Picard groups are induced by functoriality, degi denotes the
degree homomorphism, and the ci are the central charge homomorphisms for
F�Gi,sc translated to the respective connected components.

Proof By Theorem 5.4, the special fiber of ˜MG,μ is equal to ˜AG,μ = ∪λ
˜Sλ̄(t), see

Definition 5.3. For (1), it is enough to prove that every line bundle on ˜AG,μ lifts
uniquely to ˜MG,μ, or equivalently to the formal scheme ˜MG,μ ×Spec(OE ) Spf(OE )

by Grothendieck’s formal GAGA. Since H j (˜AG,μ,O
˜AG,μ

) = 0 for j = 1, 2 by
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Lemma 4.24, obstruction theory (compare [43, Proposition 5.19]) shows the existence
and uniqueness of such lifts.

For (2), we may and do assume that k is algebraically closed by étale descent. We
use Proposition 4.23 which calculates Pic(˜AG,μ) as ⊕sZ where the sum runs over
all s ∈ ˜W \ WG with l(s) = 1 and s ≤ λ̄(t) for some rational representative λ of
μ in X∗(T ). In order to finish the proof of the second part, we may and do assume
that G is simple and μ is non-zero. We have to show that the map Pic(˜F�

τμ

G ) →
Pic(˜AG,μ) is an isomorphism where τμ denotes the unique length 0 element in the
admissible set Adm(μ) ⊂ ˜W . It is enough to show that every simple reflection s ∈ Waf
appears in τ−1

μ Adm(μ), see Corollary 4.21. Assume the contrary. Then the subgroup
generated by the simple reflections which do appear is a finite Coxeter group, say,
W ′ containing τ−1

μ Adm(μ). Therefore, W ′ (hence τ−1
μ Adm(μ)) contains at most one

representative for each coset in the finite Weyl group W0 = Waf/X∗(Tsc)I : if there
were two representatives, their difference would be a non-trivial translation, so W ′
would not be finite. However, this contradicts the fact that Adm(μ) contains always
at least two different translations tμ̄ and tw0(μ̄) because μ̄ �= 0.

Part (3) is verified as follows. Since the groups involved are all torsion-free, we only
need to check commutativity after tensoring with Q. But then Lemma 4.15 applied to
each of the simple factors provides rationalized line bundles on ˜MG,μ whose generic
fiber is given by O(cLk ), exactly as claimed. 
�

Recall that Pappas–Rapoport’s coherence conjecture in [55], as corrected by Zhu
in [72], gives an equality of dimensions of certain cohomology groups, which we can
now formulate and prove in greater generality.

Corollary 5.9 Let L be an ample line bundle on ˜AG,μ. Under Hypothesis 2.1, there is
an equality

dimk H
0(˜AG,μ,L) = dimK̄ H0(˜SG,μ,K̄ ,O(cL)), (5.5)

where O(cL) := �iO(ci (L)) and the ci are the central charge homomorphisms of
the simple factors of Gad, compare with Corollary 5.8.

Proof Note that given a flat proper scheme X over a discrete valuation ringwith F-split
special fiber, and an ample line bundle L on X , the dimension of the global sections
of L on Xs and Xη agree by the vanishing of higher cohomology (and constancy of
the Euler characteristic). Therefore, the statement follows directly from Theorem 4.1,
Theorem 5.4, and Corollary 5.8. Indeed, by Corollary 5.8 (1), L lifts uniquely to
an ample line bundle over ˜MG,μ with geometric generic fiber equal to O(cL) by
Corollary 5.8 (3) (note that the integers ci (L) are well defined by Corollary 5.8 (2)).


�

5.2 Mixed characteristic

In this subsection,we assume K/Qp is of characteristic 0, andfix a uniformizerπ ∈ K .
Further, G is assumed to be adjoint, quasi-split and to satisfy adjoint, quasi-split and to
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satisfy Hypothesis 2.1. Then G is a product of K -simple groups compatibly with the
tori S ⊂ T , and we fix the data in (2.1) for each factor. The resulting O[[t]]-group lift
G of its parahoric model G is defined as the product of the lifts from Proposition 2.8
of each simple factor. We denote G′ := G ⊗ k[[t]].

Let us recall the basic properties of the Beilinson–Drinfeld Grassmannian GrG →
Spec O , where the power series variable is z = t − π , compare with [60, Sect. 6].

Proposition 5.10 The O-functorGrG is representable by an ind-projective ind-scheme.
Its generic fiber is isomorphic toGrG, whereas the special fiber is identified withF�G′ .

Proof Representability by an ind-quasi-projective ind-scheme follows from [60,
Proposition 11.7], thanks to Proposition 2.6. Its special fiber is the affine flag vari-
ety associated to the k[[t]]-group scheme G′, that is, GrG,k = F�G′ . As for the generic
fiber, we have to find and choose an identification between G ⊗ K [[z]] and G ⊗ K [[z]].
But the former group scheme is reductive, so such an isomorphism exists by [65,
Lemma 0.2], which says that every reductive group scheme over K [[z]] is constant.

Finally, we show projectivity by the same argument of [60, Proposition 6.5]: it is
enough to verify the valuative criterion for GrT . Since T is a product of restrictions
of scalars of the multiplicative group along maps of the smooth O-curves in (2.18),
this is a consequence of [30, Corollary 3.6, Lemma 3.8]. 
�

Just as in [60, Sect. 7], we introduce local models in mixed characteristic.

Definition 5.11 Let MG,μ denote the flat closure of SG,μ inside GrG,OE . We denote

by ˜MG,μ its seminormalization.

The reader is referred to Remark 5.18 for the extension to not necessarily adjoint
groups and to Lemma 5.23 for the relation to the (modified) local models from [36,
Sect. 2.6]. In the following paragraphs, we single out some important properties of
the local models.

Lemma 5.12 The reduced special fiber of MG,μ contains the μ′-admissible locus
AG′,μ′ in equicharacteristic, where μ′ is the corresponding dominant absolute
coweight of G ′.

Proof The proof is the same as the proof of [64, Lemma 3.12]. This depends on [64,
Lemma2.21]which is formulated in an equicharacteristic setting, but the proof extends
to the mixed characteristic setting using that T is induced. 
�
Remark 5.13 Since our group lifts seldom coincide with the corresponding construc-
tions of [46], we do not know how to compare our MG,μ and ˜MG,μ with the local
models from [46], when μ is non-minuscule. However, our arguments and results
below still hold for both objects. For minuscule μ, both constructions do coincide by
[1, Sect. 7].

Now, we may state our main result on the singularities of local models.

Theorem 5.14 Under Hypothesis 2.1, the local model ˜MG,μ is Cohen–Macaulay, and

has a reduced special fiber equal to ˜AG′,μ′ . If the admissible locus is irreducible, then
˜MG,μ has pseudo-rational singularities.
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Proof As in the proof of Theorem5.4,we reduce to the case O = Ŏ ,G simple and note
that MG,μ has a finite, birational, universally homeomorphic cover MGsc,μ isomorphic
to a subscheme of the Grassmannian GrGsc associated to the simply connected cover
Gsc → G. In particular, by Theorem 4.25, its generic fiber is isomorphic to SG,μ

∼=
˜SG,μ (Schubert varieties in characteristic 0 are normal) and by Lemma 5.12 the special
fiber contains ˜AG′,μ′ .

LetLad be the line bundle on GrGsc given by pullback of the determinant line bundle
under the adjoint representation. Its restriction to MGsc,μ is ample, by Lemma 5.10.
By (5.1), we get an equality

dimk H0(˜AG′
sc,μ

′ ,L⊗n
ad ) = dimE H0(SGsc,μ,L⊗n

ad ). (5.6)

This implies that ˜MG,μ is normal and its special fiber is reduced and equal to ˜AG′,μ′ ,
compare with the proof of Theorem 5.4. The Cohen–Macaulayness follows from
flatness and that of ˜AG′,μ′ proven in Theorem 5.4, see [26, Lemma 5.7]. Moreover, if
˜AG′,μ′ = ˜SG′,μ′ is irreducible, then it has F-rational singularities by Theorem 4.1, so
pseudo-rationality follows by Lemma 3.5. 
�
Remark 5.15 Again, there is an equality ˜MG,μ = MG,μ if and only if ˜AG′,μ′ = AG′,μ′ .

(Note that ˜SG,μ = SG,μ because Schubert varieties in characteristic 0 are normal.)
This is ensured, for instance, when p � |π1(G)|, and may otherwise very well fail, see
[32, Corollary 9.2].

Remark 5.16 We note that, for μ minuscule, the Gk-scheme ˜AG′,μ′ is related to the
Witt vector affine Grassmannian of G, see [1, Sect. 3].
Remark 5.17 If G is special parahoric, then the admissible locus is irreducible, so
˜MG,μ has (pseudo-)rational singularities. For a complete list of triples (G, μ,G) with
G absolutely simple and μ minuscule such that the associated admissible locus is
irreducible, the reader is referred to [36, Theorem 7.1 (1)].

Remark 5.18 The local models constructed in [1] are invariant under passing to the
adjoint group. So, if G is not necessarily adjoint, we may define following [30,
Sect. 7.1] the local model as ˜MGad,μad ⊗OEad

OE where μad is induced by μ under
G → Gad and Ead ⊂ E denotes its reflex field. Then Theorem 5.14 holds for this
more general definition: this is clear if E/Ead is unramified, and else follows from the
method of proof.

We also get a complete description of the Picard group of the local model in mixed
characteristic.

Corollary 5.19 Under Hypothesis 2.1, the following properties hold:

(1) The restriction map Pic( ˜MG,μ) → Pic(˜AG′,μ′) is an isomorphism.
(2) Let Gi for i = 1, . . . , m be an enumeration of the simple factors of G such that the

image μ̄i of μ in the group X∗(Ti )I attached to Gi is non-zero. Then the restriction
map

m
∏

i=1

Pic(˜F�
τi
G′

i
) → Pic(˜AG′,μ′) (5.7)
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is an isomorphism, where G′
i is the associated parahoric k[[t]]-model of G ′

i and
the superscript τi indicates the connected component attached to μ′

i .
(3) There is a commutative diagram:

Pic( ˜MG,μ) Pic(˜SG,μ)

Pic(˜AG′,μ′)
∏m

i=1 Pic(˜SGi ,μi )

∏m
i=1 Pic(˜F�

τi
G′

i
) Zm,

∼ ∼

∏m
i=1 degi∼

∏m
i=1 c′

i

(5.8)

where the maps of Picard groups are induced by functoriality, degi denotes the
degree homomorphism, and the c′

i are the central charge homomorphisms for
F�G′

i,sc
translated to the other components.

Proof The proof is the same as in Corollary 5.8, and we briefly explain the necessary
changes. For (1), we use Theorem 5.14 to know that ˜AG′,μ′ equals the special fiber of
˜MG,μ. The structure sheaf has vanishing higher cohomology by Lemma 4.24, so line
bundles lift uniquely.

Part (2) follows directly from Corollary 5.8 (2).
For (3), we need to produce enough line bundles on the mixed characteristic local

model ˜MG,μ, compare the proof ofLemma4.15.Wehave already seen how to construct
the adjoint line bundle during Theorem 5.14. As for the kernel of the central charge,
we define a map GrG → [Spec O/Gt=0] by reducing torsors to the subscheme defined
by the principal ideal t , where Gt=0 denotes the reduction of the O[[t]]-group scheme
G to O via t �→ 0. Pulling back line bundles of [Spec O/Gt=0] to ˜MG,μ yields the
desired lifts of ker c with trivial generic fiber. 
�

In the equicharacteristic case, we have seen in Theorem 5.4 that local models have
rational singularities. Together with Theorem 5.14 at special level, this provides some
motivation for the following:

Conjecture 5.20 The local model ˜MG,μ has pseudo-rational singularities.

This would follow fromConjecture 3.6. For the purpose of proving Conjecture 5.20
for minuscule μ, that is, the case relevant to Shimura varieties, it would suffice (by
Theorem5.14) to also assume inConjecture 3.6 that R isCohen–Macaulay and R[π−1]
is regular (as in [21, Proposition 2.13]), and F-injective can be replaced by F-split.

5.3 Functoriality of local models

In this subsection, we discuss the behavior of our local models under certain maps
of parahoric group schemes. This is not used elsewhere in the paper, but plays an
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important role in [1, Sect. 7] for proving a comparison theorem between the power
series approach of the present paper and the perfectoid approach in [1].

In both equal and mixed characteristic, a morphism of pairs (G, μ) → (˜G, μ̃) is
a map of O-group schemes G → ˜G which maps μ into μ̃ under the induced map of
reductive K -groups G → ˜G in the generic fiber, compare Remark 5.2. In order to
study functoriality properties, it is useful to base change the local model to the absolute
integral closure Ō of O with fraction field denoted K̄ .

In equal characteristic the formation of local models is functorial in the following
sense:

Lemma 5.21 In equicharacteristic (Sect.5.1), the association (G, μ) �→ ˜MG,μ⊗OE Ō
from the category of pairs as above to the category of Ō-schemes is functorial. Under
Hypothesis 2.1, it commutes with finite products, and the map G → Gad induces an
isomorphism of OE -schemes

˜MG,μ
∼= ˜MGad,μad,OE , (5.9)

where G → Gad is the map of parahoric O-models extending G → Gad and μad is
the composite of μ with G K̄ → Gad,K̄ .

Proof This was proven in the course of Theorem 5.4, see especially the reduction in
the beginning of its proof. Recall that for the isomorphism (5.9) and the commutation
with finite products, the key fact is that ˜MG,μ ⊗OE O

˜E is normal for every finite field
extension ˜E ⊃ E . 
�
Remark 5.22 Using Remark 5.7, the special fiber of ˜MG,μ ⊗OE Ō is always reduced,
so the base changed local model is normal and Lemma 5.21 holds without assuming
Hypothesis 2.1.

In mixed characteristic (Sect. 5.2), functoriality of (G, μ) �→ MG,μ (or, its base

change to Ō) is subtle due to the auxiliary choices involved in the construction of the
O[[t]]-group liftG. Herewe point out two particularly interesting cases of functoriality:
canonical z-extensions, making the connection to [36, Section 2.6], and embeddings
into the Weil restriction of the split form, used in [1, Section 7].

5.3.1 Canonical z-extensions following [49, Section 2.4]

Assume K/Qp is of characteristic 0 and use the notation introduced in Sect. 5.2. In
particular, G satisfies Hypothesis 2.1, is adjoint, quasi-split and equipped with a quasi-
pinning. We lift the quasi-pinning along the simply connected cover Gsc → G. This
induces amapGsc → G on the O[[t]]-lifts by functoriality of extending birational group
laws, compare Proposition 2.8. The maximal torus T acts by inner automorphisms on
Gsc, so we may form ˜G := Gsc � T . By [49, Lemme 2.4.2], there is the z-extension

1 → Tsc
t �→(t,t−1)−−−−−−→ ˜G

(g,t) �→gt−−−−−→ G → 1 (5.10)
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with ˜Gder = Gsc and T ↪→ ˜G, t �→ (1, t) being a maximal torus. By functoriality of
extensions of birational group laws, the connected Néronmodel T acts on Gsc by inner
automorphisms. This allows us to define the O[[t]]-group scheme ˜G := Gsc�T , which
equals the model birationally glued from (Tsc × T , (Ua)a∈�nd

G
) as in Proposition 2.8.

Moreover, it fits in a short exact sequence of O[[t]]-group schemes

1 → Tsc → ˜G → G → 1, (5.11)

as can be seen by showing that G and the fppf quotient ˜G/Tsc are solutions to the
same birational group law, hence are isomorphic. The extension (5.11) is called the
canonical z-extension of G.

The following lemma relates ˜MG,μ to the construction of local models via z-
extensions as in [36, Sect. 2.6]. Here we view μ as a geometric cocharacter of T .

Lemma 5.23 Under Hypothesis 2.1, the map ˜G → G from (5.10) induces an isomor-
phism of OE -schemes

M
˜G,μ̃

∼=−→ ˜MG,μ, (5.12)

where μ̃ = (1, μ) is viewed as a geometric cocharacter of ˜G = Gsc � T .

Proof Firstly, as T is a maximal torus in both G and ˜G, the cocharactersμ, μ̃ have the
same reflex field E . Thus,˜G → G induces a finite birational universal homeomorphism
on orbit closures

M
˜G,μ̃ → MG,μ, (5.13)

which is an isomorphism on residue fields, see [26, Corollary 2.3 and its proof]. As
˜Gder = Gsc, the orbit closure M

˜G,μ̃ is normal by the proof of Theorem 5.14. So the

map (5.13) induces M
˜G,μ̃

∼= ˜MG,μ because the latter is normal by Theorem 5.14. 
�

5.3.2 Embedding into the Weil restriction of the split form

We record the following result concerning the functoriality of the constructionG �→ G,
used in [1]. Recall the notation from Sect. 2 and consider the adjunction morphism

G = ResL/K (G0) → ResL/KRes˜K/L(H0 ⊗Z K ) = Res
˜K/K (H0 ⊗Z K ) =: ˜G,

(5.14)

where ˜K contains the Galois hull of M/L and H0/Z is the split form of G0 induced
by (2.1). We assume the following:

Hypothesis 5.24 If p = 3, then G0 ⊗K K̆ is not a triality form of type D4.

Recall the O((t))-group lifts G fromLemma 2.7.We equip ˜G with the quasi-pinning
induced from the pinning of H0 ⊗Z K , leading to the O((t))-group lift ˜G.
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Lemma 5.25 Under Hypothesis 5.24, the map (5.14) lifts to a locally closed immersion
of O((t))-group schemes

G → ˜G, (5.15)

compatibly with reduction to κ((t)) for κ = k, K .

Proof As the formation of G is compatible with restriction of scalars, we assume
without loss of generality that G = G0, so L = K . Hypothesis 5.24 ensures that the
Galois hull of the fraction fields of the ring extension O[[t]] → OMnr [[v]] is given by
the fraction field of O

˜K nr [[v]]. The map (5.15) exists by definition of G over the étale
locusU of O((t)) → OMnr ((v)), compare with Lemma 2.3. It can be further extended to
Spec O((t)) by taking the obvious inclusions for the models of the root groups (2.21),
respectively the connected Néronmodels of tori, and by applying functoriality of solu-
tions to birational group laws, compare with [49, Proposition 3.3.9]. This constructs
(5.15), which is a locally closed immersion by [9, Proposition 2.2.10]. 
�

Let ˜S ⊂ ˜G be the maximal split subtorus contained in Res
˜K/K (S). The inclusion

of apartments

A (G, S, K ) ⊂ A (˜G,˜S, K ) (5.16)

is also compatible with the isomorphism (2.20). For a point x ∈ A (G, S, K ), we
denote its image by x̃ ∈ A (˜G,˜S, K ).

Corollary 5.26 For x ∈ A (G, S, K ), the map (5.15) extends to a locally closed immer-
sion of the O[[t]]-group schemes

Gx → ˜Gx̃ , (5.17)

constructed in Proposition 2.8. The map (5.17) reduces to the canonical map of para-
horic group schemes over O and κ[[t]] with κ = k, K .

Proof Applying functoriality of solutions to birational group laws, it suffices to con-
struct the maps between the models of roots groups and of tori, following [49,
Proposition 3.4.8]. The resultingmap is again a locally closed immersion by [9, Propo-
sition 2.2.10]. That its reduction over O , respectively κ[[t]], is the expected map on
parahoric group schemes is clear from the construction, compare Proposition 2.8. 
�

Let us briefly return to the situation illustrated in (5.14) of the closed embedding
of G into the associated Weil-restricted split form ˜G. We denote by μ̃ the geometric
conjugacy class of cocharacters of ˜G obtained as the image of μ. The following
compatibility at the level of local models plays a role in the proof of [1, Theorem 7.23].

Lemma 5.27 Under Hypothesis 2.1 and Hypothesis 5.24, the map G := Gx → ˜Gx̃ :=
˜G from (5.17) induces a finite morphism

˜MG,μ → ˜M
˜G,μ̃ (5.18)
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factoring uniquely through its scheme-theoretic image via a universal homeomor-
phism.

Proof By naturality of the Beilinson–Drinfeld Grassmannian, we obtain a map
between the orbit closures, and hence the map (5.18) by functoriality of seminor-
malizations [70, Tag 0EUS]. By projectivity of local models, it is enough to show that
(5.18) is injective on geometric points, which in turn can be tested on orbit closures.

In the generic fiber, the map SG,μ → S
˜G,μ̃ of Schubert varieties is a closed

immersion because (5.14) is so. In the reduced special fibers, the map is given by
AG′,μ′ → A

˜G′,μ̃′ on the respective admissible loci and is induced fromF�G′ → F�
˜G′ .

It may happen that F�G′ → F�
˜G′ is not a monomorphism, because G′ → ˜G′ is

a locally closed immersion. But this difference amounts to passing to a finite étale
quotient of F�G′ with isomorphic connected components (given by the affine flag
variety of the flat closure of the immersion), which embeds into F�

˜G′ . Since AG′,μ′
is connected, this is enough to deduce injectivity of AG′,μ′ → A

˜G′,μ̃′ on geometric
points. 
�
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