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Cellular pavings of fibers of convolution morphisms

Thomas J. Haines

Abstract. This article proves, in the case of split groups over arbitrary fields, that all fibers of
convolution morphisms attached to parahoric affine flag varieties are paved by products of affine
lines and affine lines minus a point. This applies in particular to the affine Grassmannian and to
the convolution morphisms in the context of the geometric Satake correspondence. The second
part of the article extends these results over Z. Those in turn relate to the recent work of Cass–van
den Hove–Scholbach on the geometric Satake equivalence for integral motives, and provide some
alternative proofs for some of their results.
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1. Introduction and main results

Let G be a split connected reductive group over any field k. Let W be the Iwahori–Weyl group of
LG(k) = G(k((t))), and for each r-tuple w• = (w1, . . . ,wr ) ∈W r and choice of standard parahoric subgroup
P ⊂ LG(k), consider the convolution morphism

mw•,P : XP (w•) := XP (w1)×̃ · · · ×̃XP (wr ) −→ XP (w∗)

defined on the twisted product of Schubert varieties XP (wi) ⊂ FlP (see Sections 2 and 3). Such morphisms
have long played an important role in the geometric Langlands program and in the study of the geometry
of Schubert varieties. For example, if w• = (s1, . . . , sr ) is a sequence of simple affine reflections, w = s1 · · ·sr
is a reduced word, and P is the standard Iwahori subgroup B, then XB(s•)→ XB(w) is the Demazure
resolution (of singularities) of XB(w). If P = L+G is the positive loop group and w• = µ• = (µ1, . . . ,µr ) is a
tuple of cocharacters in G, the corresponding convolution morphism is used to define the convolution of
L+G-equivariant perverse sheaves on the affine Grassmannian GrG = LG/L+G, and hence it plays a key role
in the geometric Satake correspondence.

Numerous applications stem from the study of the fibers of convolution morphisms, their dimensions
and irreducible components, and possible pavings of them by affine spaces or related spaces. This article
will focus on pavings of fibers by affine spaces, or by closely related spaces. We recall that a variety
X is paved by varieties in a class C provided that there exists a finite exhaustion by closed subvarieties
∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xl = X such that each locally closed difference Xi −Xi−1 for 1 ≤ i ≤ r is isomorphic to
a member of the class C.
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The fact that the fibers of Demazure resolutions admit pavings by affine spaces was for a long time
a folklore result, until a proof appeared in [Hai05] and later more generally in [dCHL18] (see [dCHL18,
Theorem 2.5.2]). This has been used in proving various parity vanishing and purity results in Kazhdan–
Lusztig theory, see [Hai05, dCHL18], and in the geometric Satake correspondence; see [Gai01, MV07, Ric14].
The paving of certain fibers related to the affine Grassmannian for GLn gives a different approach to paving
by affines of some Springer–Spaltenstein varieties, which are certain partial Springer resolutions of the
nilpotent cone for GLn; see [Hai06, Proposition 8.2 and what follows] and [Spa76].

One could conjecture that all fibers of general convolution morphisms XP (w•)→ XP (w∗) are paved by
affine spaces. In the special case of a sequence of minuscule cocharacters w• = µ• and the associated
convolution morphism XL+G(µ•) → XL+G(|µ•|) for the affine Grassmannian GrG = LG/L+G, this was
proved in [Hai06, Corollary 1.2]. In general for the affine Grassmannian, it is not known which fibers are
paved by affine spaces (see [Hai06, Question 3.9]). The existence of an affine space paving of fibers of
mw•,P in the general case seems to be an interesting open question—and the author is not aware of any
counterexamples. One can consider the analogous question of when fibers of uncompactified convolution
morphisms YP (w•)→ XP (w∗) are paved by affine spaces. This turns out to usually fail (for examples, see
Remarks 6.6 and 6.7 below). However, a weaker result does always hold. (As was implicit in the above
discussion, in the following statements, all fibers are the scheme-theoretic fibers endowed with their induced
reduced subscheme structure.)

Theorem 1.1. Every fiber of a convolution morphism YP (w•)→ XP (w∗) is paved by finite products of copies of
A

1 and A1 −A0.

As a corollary, we obtain the following result on fibers of the usual convolution morphisms.

Corollary 1.2. Every fiber of any convolution morphism XP (w•)→ XP (w∗) is paved by finite products of copies
of A1 and A1 −A0.

The previous two results show that the fibers in question are similar to cellular k-schemes, in the sense of
[RS20, Definition 3.1.5]. We adopt a similar terminology and declare that they admit cellular pavings. (This
reflects a technical point: Here, we do not prove the stratification property, the property that the closure of
each stratum is a union of strata.) A weaker version of Corollary 1.2 was stated without proof in [dCHL18,
Remark 2.5.4]. The proof is given here in Sections 6, 7, and 8.

One situation where paving by affine spaces is known is given by the following result.

Theorem 1.3. Suppose w• = s• = (s1, s2, . . . , sr ) is a sequence of simple reflections with Demazure product
s∗ = s1 ∗ s2 ∗ · · · ∗ sr . Then the fibers of XB(s•)→ XB(s∗) are paved by affine spaces.

This theorem was proved in [dCHL18, Theorem 2.5.2]. However, here we give a different proof, which has
the advantage that it can be easily adapted to prove the special case of Theorem 1.1 where P = B and every
wi is a simple reflection. This in turn is used to prove the general case of Theorem 1.1.

The results above should all have analogues at least for connected reductive groups G which are defined
and tamely ramified over a field k((t)) with k perfect (see Remark 4.2). The proofs will necessarily be more
involved and technical, and the author expects them to appear in a separate work.

In Section 11, we extend all the preceding results over Z. We prove in that section the following result
(Theorem 11.18), the second part of which recovers [CvdHS22, Theorem 1.2].

Theorem 1.4. Assume G
Z
⊃ B

Z
⊃ T

Z
is a connected reductive group over Z with Borel pair defined over

Z. Consider a parahoric subgroup P
Z
and the associated Schubert schemes XP ,Z(w) ⊂ FlP ,Z. The convolution

morphisms attached to w• = (w1, . . . ,wr ) ∈W r may be constructed over Z,

mw•,PZ : XP ,Z(w•) −→ XP ,Z(w∗),
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and for any v ≤ w∗, the reduced fiber m−1
w•,PZ(v ePZ ) has a cellular paving over Z. Furthermore, for any standard

parabolic subgroup P
Z

=M
Z
N

Z
and any pair (µ,λ) ∈ X∗(T )+×X∗(T )+M , the subscheme L+M

Z
LN

Z
xλ∩L+G

Z
xµ

of the affine Grassmannian GrG,Z, with its reduced subscheme structure, has a cellular paving over Z.

Leitfaden

Here is an outline of the contents of this article. In Sections 2 and 3, we give our notation and recall
the basic definitions related to convolution morphisms. The main idea of the proof of Theorem 1.1 is to
prove it by induction on r : One projects from the fiber onto the r − 1 term in the twisted product; then one
needs to show that the image is paved by locally closed subvarieties, each of which has a C-paving, and
over which the aforementioned projection morphism is trivial. The strategy of proof is given in more detail
in Section 6.2. The required triviality statements are proved in Sections 4 and 5. The core of the article
is found in Sections 6– 8. First, Theorem 1.3 is proved in Section 6.2, and this proof is then adapted to
prove the special case of Theorem 1.1 for P = B and all wi simple reflections, in Section 6.3. This is used to
deduce the special case of Theorem 1.1 with P = B in Section 7.2. Finally, the general case of Theorem 1.1 is
proved in Section 7.3, using the previous special cases as stepping stones. In Section 8, we quickly deduce
Corollary 1.2 from Theorem 1.1. In Section 9, we give an application to structure constants for parahoric
Hecke algebras. In Section 11, we develop all the needed machinery to extend the above results over Z. The
paper ends with Errata for [dCHL18] in Section 12.
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me to write up these results. I also thank him for helpful comments on an early version of this paper, and
for giving me access to an advance copy of the revised version of [CvdHS22]. I am grateful to the referee for
helpful remarks and suggestions.

2. Notation

Generally speaking, we follow the same notation and conventions as [dCHL18]. Let G be a split connected
reductive group over a field k with algebraic closure k̄ and separable closure ksep. Fix a Borel pair G ⊃ B ⊃ T ,
also split and defined over k. This gives rise to the based absolute root system (X∗(T ) ⊃ Φ ,X∗(T ) ⊃ Φ∨,∆),
the real vector space V = X∗(T )⊗R, and the canonical perfect pairing ⟨·, ·⟩ : X∗(T ) ×X∗(T )→ Z. The
affine roots Φaff = {a = α +n |α ∈ Φ , n ∈Z} are affine-linear functionals on V . We denote by 0 the facet
containing the origin in V and the B-dominant Weyl chamber C = {v ∈ V | ⟨α,v⟩ > 0, ∀α ∈ ∆}. We denote
the set of dominant cocharacters by X∗(T )+ := X∗(T )∩C, where C is the closure of C in V . We also fix the
base alcove a ⊂ C whose closure contains 0. The positive simple affine roots ∆aff are the minimal affine
roots a = α +n taking positive values on a. We use the convention that λ ∈ X∗(T ) acts on V by translation
by λ. The finite Weyl group is the Coxeter group (W0,S) generated by the simple reflections {sα ∈ S} on V ,
for α ∈ ∆; the group W0 fixes 0. The extended affine Weyl group W = X∗(T )⋊W0 acts on V and hence on
the set Φaff by precomposition. Let (Waff,Saff) denote the Coxeter group generated by Saff, the simple affine
reflections sa for a ∈ ∆aff. It has a Bruhat order ≤ and a length function ℓ : Waff→Z≥0. Let Ω ⊂W be the
subgroup stabilizing a ⊂ V . The group decomposition W =Waff ⋊Ω allows us to extend ≤ and ℓ from Waff
to W , by declaring Ω to be the set of length zero elements in W .

Fix the field F = k((t)) and ring of integers O = k[[t]]. The Iwahori–Weyl group NG(T )(F)/T (O) may be
naturally identified with W . We choose once and for all lifts of w ∈W0 in NGT (O), and we lift λ ∈ X∗(T ) to
the element tλ := λ(t) ∈ T (F). Altering these lifts by any elements in T (O) does not affect anything in what
follows. The group NG(T )(F) acts naturally on the apartment X∗(T )⊗R, and our convention is that tλ acts
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by translation by −λ. This is the same as the convention for identifying the Iwahori–Weyl group with the
extended Weyl group which is used in [BT72].

We define the loop group LG (resp., positive loop group L+G) to be the group ind-scheme (resp., group
scheme) over k representing the group functor on k-algebras LG(R) = G(R((t))) (resp., L+G(R) = G(k[[t]])).
For a facet f contained in the closure of a, we obtain the “standard” parahoric group scheme Pf (see
[BT84, HR08]). We often write P := L+Pf and regard this as a (standard) parahoric group in LG. Note that
L+G = L+P0. The (standard) Iwahori subgroup will be denoted by B := L+Pa. Let Wf =:WP ⊂Waff be the
subgroup which fixes f pointwise; it is a Coxeter group generated by the simple affine reflections which
fix f. The Bruhat order ≤ on W descends to a Bruhat order ≤ on coset spaces such as WP \W/WP and
W/WP . Let fW f denote the elements w ∈W which are the unique ≤-maximal elements in their double
cosets WPwWP .

The partial affine flag variety is by definition the étale sheafification of the presheaf on the category
affk of affine schemes Spec(R) over k given by R 7→ LG(R)/L+Pf(R). It is represented by an ind-projective
ind-scheme denoted simply by FlP = LG/L+Pf, and it carries a left action by P = L+Pf. Denote by eP its
natural base point. It is well known (see e.g. [HR08]) that for any two standard parahoric subgroups Q
and P , we have a natural bijection on the level of k-points and ksep-points

(2.1) Q(k)\FlP (k) =WQ\W/WP =Q(ksep)\FlP (ksep).

The elements of Bruhat–Tits theory used in [HR08, Proposition 8, Remark 9] work for split groups without
any assumption that the residue field k is perfect (cf. also Remark 4.2). Alternatively, for split G, (2.1) can be
proved directly for any residue field k (including k̄), using BN-pair relations.

For w ∈W , let YP (w) (resp., YBP (w)) denote the P -orbit (resp., B-orbit) of weP in FlP . When P = B, we
will often omit the subscripts. Define the Schubert variety XP (w) to be the Zariski closure of YP (w) ⊂ FlP ,
endowed with reduced structure. Similarly, define X(w) = XB(w) and XBP (w).

In the part of this paper where we work over a field k, the schemes which arise are finite-type separated
schemes over k (not necessarily irreducible). We will always give them a reduced structure, and we will call
them “varieties.” The morphisms of varieties we consider will always be defined over k, and the varieties
and the morphisms between them will usually be described on the level of points in an unspecified algebraic
closure of k.

In this article, we use the following notation: An equality
⊔
i Zi = Z denotes a finite (or possibly countable)

paving of a scheme or ind-scheme Z into disjoint locally closed subschemes Zi . Note that the underlying
sets are disjoint but there could be closure relations between them—they are not necessarily coproducts in
the category of topological spaces.

3. Review of convolution morphisms

For w ∈W , define PwP =
⊔
v≤wPvP , where v ranges over elements v ∈WP \W/WP . For any r-tuple

w• = (w1, . . . ,wr ) ∈W r , we define XP (w•) to be the quotient of P r = (L+Pf)r acting on

Pw1P ×Pw2P × · · · × PwrP

by the right action

(3.1) (g1, g2, . . . , gr ) · (p1,p2, . . . ,pr ) :=
(
g1p1,p

−1
1 g2p2, . . . ,p

−1
r−1grpr

)
.

We define YP (w•) similarly, with each PwiP replaced by PwiP . The quotients should be understood as
étale sheafifications of presheaf quotients on the category affk . It is well known that XP (w•) (resp., YP (w•))
is represented by an irreducible projective (resp., quasi-projective) k-variety.
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We regard the above objects as “twisted products”: XP (w•) = XP (w1)×̃XP (w2)×̃ · · · ×̃XP (wr ) (resp.,
YP (w•) = YP (w1)×̃YP (w2)×̃ · · · ×̃YP (wr )), consisting of tuples (g1P , g2P , . . . , grP ) such that g−1

i−1gi ∈ PwiP
(resp., PwiP ) for all 1 ≤ i ≤ r (here g0 = 1 by convention).

Recall that the Demazure product W r →W , (w1,w2, . . . ,wr ) 7→ w1∗w2∗· · ·∗wr is an associative operation.
It induces an associative r-fold product ( fW f)r → fW f; see e.g. [dCHL18, Section 4]. Given any w ∈W , let
fwf denote the unique ≤-maximal element in WPwWP . Given w• = (w1,w2, . . . ,wr ) ∈W r , define

w∗ := fwf
1 ∗

fwf
2 ∗ · · · ∗

fwf
r .

Then the multiplication map (LG)r → LG descends to the quotient and defines the convolution morphisms

mw• =mw•,P : XP (w•) −→ XP (w∗),

pw• = pw•,P : YP (w•) −→ XP (w∗);

see [dCHL18, Section 4]. We might describe those of the second kind as uncompactified convolution morphisms.

4. Consequences of a factorization of the pro-unipotent Iwahori subgroup

Recall that f is a facet in the closure of a and the facets f and a give rise to the Iwahori and parahoric
subgroups B = L+Pa and P = L+Pf. The group U is the pro-unipotent radical of the Iwahori subgroup B;
it is the preimage of the unipotent radical U ⊂ B under the natural homomorphism B → B induced by
t 7→ 0; see [dCHL18, Section 3.7]. Also recall that UP = L−−Pf is the ind-affine group ind-scheme defined in
[dCHL18, Definition 3.6.1], called the negative parahoric loop group. The definition is given over Z in (11.1).

For an affine root a, the notation a
f
> 0 means that a takes positive values on the facet f. When f = a, we

usually simply write a > 0. The notation a
f
≥ 0, a

f
< 0, etc., has the obvious meaning.

Proposition 4.1. Let P ⊃ B be any fixed parahoric subgroup as above, and let v ∈W be an arbitrary element. Let
f be the facet in the closure of the base alcove a which corresponds to P .

(a) We have a (non-commuting ) factorization of group functors

U =
(
U ∩ vUP

)
· (U ∩ vP ).

(b) There is an isomorphism of schemes U ∩ vUP �
∏
aUa, where Ua ranges over the affine root groups

corresponding to affine roots with a > 0 and v−1a
f
< 0, and the product is taken in any order.

Proof. This is [dCHL18, Proposition 3.7.4]. The proof over Z given in Proposition 11.6 works here as well. □

Remark 4.2. Usually the hypothesis that k is perfect is implicit in Bruhat–Tits theory and the theory of
parahoric subgroups: All residue fields of the complete discretely valued fields F one works over should
be assumed to be perfect so that Steinberg’s theorem applies to show that every reductive group over the
completion F̆ of a maximal unramified extension of F is quasi-split. (This assumption on residue fields is
missing from [HR08] and should be added. I am grateful to Gopal Prasad for pointing out this oversight.)
Since we are assuming our group G is already split over k, it is automatically quasi-split over ˘k((t)) = ksep((t)).
Therefore, we do not need to assume k is perfect when invoking Bruhat–Tits theory for G. Note that the
hypothesis that k is perfect appears to be used in the proof of [dCHL18, Proposition 3.7.4] since that proof
relies on [dCHL18, Remark 3.1.1]. However, the latter actually holds for all k: We see the key point that B
is k-triangularizable in the sense of [Spr98, Section 14.1] by invoking [Spr98, Propositions 16.1.1 and 14.1.2]
applied to B.

Lemma 4.3. Assume that v is right-f-minimal, i.e., it is the unique minimal element in its coset vW⟨f⟩, where
W⟨f⟩ is the Coxeter subgroup of Waff which fixes f pointwise. Then for any positive affine root a > 0, we have

v−1a
f
< 0 ⇐⇒ v−1a < 0.
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Proof. The implication (⇒) uses only that f belongs to the closure of a and holds for any v ∈W .

Next we prove (⇐). Assuming v−1a < 0, we wish to prove v−1a
f
< 0. Suppose on the contrary that

v−1a
f
≥ 0. Combining it with v−1a < 0, we deduce v−1a

f= 0, that is, v−1sav ∈W⟨f⟩. Since v is right-f-minimal
and sav ∈ vW⟨f⟩, we deduce that sav > v. On the other hand, since a is positive on a and a is negative on
va, we see that va and a are on opposite sides of the affine root hyperplane Ha, which means sav < v, so we
have a contradiction. □

Proposition 4.4. If v ∈W is right-f-minimal, then we have isomorphisms

YBP (v) � U ∩ vUP � U ∩ vU � YBB(v).

Proof. Since v normalizes T (O), we have YBP (v) = UvP /P , which identifies with U ∩ vUP by Proposi-
tion 4.1(a) and by the fact that UP → FlP is an (open) immersion; see e.g. [dCHL18, Theorem 2.3.1]. This is
identified with U ∩ vU by Proposition 4.1(b) and Lemma 4.3. □

Remark 4.5. The proof of Proposition 4.4 given here ultimately relies on the negative parahoric loop
group introduced in [dCHL18]. Another proof which is more general and which avoids this reliance is
given in [HR23, Lemma 3.3]. We give the proof above because it is an almost immediate consequence of
Proposition 4.1, which we need anyway to establish Proposition 5.3 below.

5. Stratified triviality of convolution morphisms

Definition 5.1. Let f : X → Y be a morphism of schemes over a base scheme S . For a locally closed
S-subscheme Z ⊂ Y and an S-point z : S→ Z, write f −1(z) = f −1(Z)×f ,Z,z S . We say that f is trivial over
Z if for some point z ∈ Z(S) (equivalently, for all points z ∈ Z(S)), there is an isomorphism of schemes
φz : f −1(Z) ∼→ f −1(z)×S Z such that the diagram

(5.1) f −1(Z)
φz
∼

//

f ""

f −1(z)×S Z

pr2
zz

Z

commutes and such that, writing φz = (ψz, f ), the morphism ψz is a retraction (a left-inverse) of the canonical
morphism iz : f −1(z)→ f −1(Z).

To justify the definition, we need the following lemma.

Lemma 5.2. For every pair z,z′ ∈ Z(S), the data (φz,ψz) for z give rise to corresponding data (φz′ ,ψz′ ) for z′ .
This shows that if f is trivial with respect to one choice of z ∈ Z(S), it is trivial with respect to any other choice
z′ ∈ Z(S).

Proof. Suppose φz = (ψz, f ) is given, and suppose z′ : S → Z is any S-point of Z . Then φ−1
z as in (5.1)

induces an S-isomorphism ψz′ ,z from the pull-back of pr2 along z′ to the pull-back of f along z′ , that is,

ψz′ ,z : f −1(z) ∼−→ f −1(z′).

Then ψz′ := ψz′ ,z ◦ψz gives a Z-isomorphism φz′ := (ψz′ , f ) attached to z′ , and the assumption that ψz is a
retraction of iz implies that ψz′ is likewise a retraction of the canonical morphism iz′ : f −1(z′)→ f −1(Z). □

When we are working in the category of k-varieties (as in the next proposition), we use the same
terminology, but it is understood that objects and morphisms are in that category, and it may or may not be
possible to upgrade the statements to the category of k-schemes, that is, without taking reduced structures.

Proposition 5.3. The morphism mw• : XP (w•)→ XP (w∗) is trivial over every B-orbit in its image.
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Proof. Writing m :=mw• , we prove the triviality of the map m over B-orbits contained in its image. Assume
YBP (v) ⊂ XP (w∗). By Proposition 4.4, an element P ′ ∈ YBP (v) can be written in the form

P ′ = uvP

for a unique element u ∈ U ∩ vUP .
We can then define an isomorphism

(5.2) m−1(YBP (v)) ∼−→ m−1(vP )×YBP (v)

by sending (P1, . . . ,Pr−1,uvP ) to (u−1P1, · · · ,u−1Pr−1,vP ) × uvP . Obviously, the first factor belongs to
m−1(vP ).

This is a situation where the statement and proof work in the category of k-schemes, not just the category
of k-varieties – this uses the schematic decomposition proved in Proposition 4.1(a). But here we are giving all
fibers their reduced structure; this makes sense because the scheme-theoretic fiber product over k on the
right-hand side of (5.2) is automatically reduced, even when k is not perfect, because YBP (v) is schematically
an affine space, thanks to Proposition 4.1(b). □

6. Paving results for the case P =B

6.1. BN-pair relations and lemmas on retractions

The following statements can be interpreted at the level of k- or k̄-points, but we will suppress this from
the notation. Recall that given B1 = g1B, B2 = g2B, and w ∈ W , we say the pair (B1,B2) is in relative
position w (and we write B1

w B2) if and only if g−1
1 g2 ∈ BwB. We write

B1
≤w B2 if and only if B1

v B2 for some v ≤ w.

We have
YB(w) =

{
B′ | B w B′

}
and XB(w) =

{
B′ | B ≤w B′

}
.

The BN-pair relations hold for v ∈W and s ∈ Saff:

BvBsB =

BvsB if v < vs,

BvsB ∪BvB if vs < v.
(6.1)

Note that for every v ∈W and s ∈ Saff, there is an isomorphism {B′ | vB ≤s B′} � P
1 and {B′ | vB ≤s B′} ⊂

YB(v)∪YB(vs).

Lemma 6.1. Suppose s ∈ Saff and v ∈W .

(i) If v < vs, then {B′ | vB ≤s B′} ∩YB(v) = {vB} �A
0.

(ii) If v < vs, then {B′ | vB ≤s B′} ∩YB(vs) �A
1.

(iii) If vs < v, then {B′ | vB ≤s B′} ∩YB(v) �A
1.

(iv) If vs < v, Then {B′ | vB ≤s B′} ∩YB(vs) = {vsB} �A
0.

Proof. This is obvious from properties of the retraction map from the building associated to G onto the
apartment corresponding to T , with respect to an alcove in that apartment. A reference for how such
retractions “work” is [HKM12, Section 6]. □

In a similar way, we get an analogous lemma.

Lemma 6.2. Suppose s ∈ Saff and v ∈W .

(i) If v < vs, then {B′ | vB s B′} ∩YB(v) = ∅.
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(ii) If v < vs, then {B′ | vB s B′} ∩YB(vs) �A
1.

(iii) If vs < v, then {B′ | vB s B′} ∩YB(v) �A
1 −A0.

(iv) If vs < v, then {B′ | vB s B′} ∩YB(vs) = {vsB} �A
0.

6.2. Proof of Theorem 1.3

Since B is understood, we will write Y (w•) for YB(w•) and X(w•) for XB(w•) in what follows. Let s• =
(s1, . . . , sr ) ∈ S r . There is no requirement here that s1 · · ·sr be reduced. Recall the subvariety X(s•) ⊂ (G/B)r

which consists of the r-tuples (B1, . . . ,Br ) such that Bi−1
≤si Bi for all i = 1, . . . , r (with the convention that

B0 = B).
We are going to prove the paving by affine spaces of the fibers of the morphism

m : X(s•) −→ X(s∗) ⊂ G/B, (B1, . . . ,Br ) 7−→ Br .

We proceed by induction on r . The case r = 1 is trivial, so we assume r > 1 and that the theorem holds for
r − 1. Let s′∗ := s1 ∗ · · · ∗ sr−1. Let s′• = (s1, . . . , sr−1). By our induction hypothesis, the theorem holds for

m′ : X(s′•) −→ X(s′∗), (B1, . . . ,Br−1) 7−→ Br−1.

Now suppose v ≤ s∗, so that vB ∈ Im(m). For an element (B1, . . . ,Br−1,vB) ∈m−1(vB), we have

B v vB ≤sr Br−1.

It follows from the BN-pair relations that Br−1 ∈ Y (v)∪Y (vsr ). We consider the map

ξ : m−1(vB) −→ Y (v)∪Y (vsr )

(B1, . . . ,Br−1,vB) 7−→ Br−1.

We will examine the subsets Im(ξ)∩Y (v) and Im(ξ)∩Y (vsr ). We will show that

(i) these subsets are affine spaces (either empty, a point, or A1); one of them, denoted by A1, is closed
in Im(ξ), and the other, denoted by A2, is nonempty, open, and dense in Im(ξ);

(ii) if Ai , ∅, then Ai belongs to Im(m′); furthermore, ξ−1(Ai) �m′−1(Ai) under the obvious identifi-
cation, and ξ : ξ−1(Ai)→Ai corresponds to the morphism m′ : m′−1(Ai)→Ai .

These facts are enough to prove Theorem 1.3. Indeed, applying ξ−1 to the decomposition

Im(ξ) = A1 ∪A2

and using (ii) gives us a decomposition

m−1(vB) = ξ−1(A1)∪ ξ−1(A2) =m′−1(A1)∪m′−1(A2),

where the first set is closed and the second is nonempty and open. By the induction hypothesis, the fibers
of m′ are paved by affine spaces. Since Ai is contained in a B-orbit, we see m′ is trivial over each Ai by
Proposition 5.3, and hence each m′−1(Ai) is paved by affine spaces. Thus m−1(vB) is paved by affine spaces.

To verify properties (i) and (ii), we need to consider various cases. We start with two cases which arise
from the following standard lemma about the Bruhat order.

Lemma 6.3. Let (W,S) be a Coxeter group and x,y ∈W and s ∈ S . Then x ≤ y implies x ≤ ys or xs ≤ ys (or
both).

Proof. This argument can be found in the literature (see e.g. [Hum90, Proposition 5.9]), but we give a short
proof for the convenience of the reader. Suppose x ≤ y. We may assume that ys < y. Then we may write
x = ỹs s̃, where ỹs (resp., s̃) is a subword of any reduced word giving ys (resp., of s). If x = ỹs, then x ≤ ys. If
x = ỹss, then xs = ỹs ≤ ys. □

Recall v ≤ s∗ by assumption. The two cases we need to consider are as follows:

Case I: s′∗ < s
′
∗sr , so that s∗ = s′∗sr . Thus by Lemma 6.3, v ≤ s′∗ or vsr ≤ s′∗.
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Case II: s′∗sr < s
′
∗, so that s∗ = s′∗. Thus v ≤ s′∗.

We will break each of these into subcases, depending on whether v < vsr or vsr < v. We then consider
further subcases depending on which of v or vsr precedes s′∗ in the Bruhat order.

Case I.1: v < vsr . So v ≤ s′∗ is automatic. There are two subcases:
I.1a: v < vsr ≤ s′∗.
I.1b: v ≤ s′∗ but vsr ≰ s

′
∗.

Case I.2: vsr < v. So vsr ≤ s′∗ is automatic. There are two subcases:
I.2a: vsr < v ≤ s′∗.
I.2b: vsr ≤ s′∗ but v ≰ s′∗.

Case II.1: v < vsr . As v ≤ s′∗ is automatic, there are two subcases:
II.1a: v < vsr ≤ s′∗.
II.1b: v ≤ s′∗ but vsr ≰ s

′
∗.

Case II.2: vsr < v. Here vsr ≤ s′∗ and v ≤ s′∗, so there are no further subcases.

Consider any element (B1, . . . ,Br−1,vB) in m−1(vB). As already noted above, we have B v vB ≤sr Br−1.
Then Lemma 6.1 tells us the shape of Im(ξ)∩Y (v) and Im(ξ)∩Y (vsr ) in all the cases enumerated above.
We record the results in the following table:

Case Im(ξ)∩Y (v) Im(ξ)∩Y (vsr )

I.1a A
0

A
1

I.1b A
0 ∅

I.2a A
1

A
0

I.2b ∅ A
0

II.1a A
0

A
1

II.1b A
0 ∅

II.2 A
1

A
0

In each case it is clear which piece should be labeled A1 or A2. This proves the main part of (i) and (ii);
the other assertions are clear. This completes the proof of Theorem 1.3. □

Remark 6.4. Each A
1 appearing in the table may be identified with a suitable affine root group Uα+n, the

k-group with k-points
Uα+n(k) = {uα(xtn) |x ∈ k},

where uα : Ga→ G is the root homomorphism corresponding to the root α. For example, consider Case I.1a.
Then Im(ξ)∩Y (vsr ) is {Br−1 |vB

sr Br−1}. Each such Br−1 can be expressed as Br−1 = vusrB for a unique
u ∈ U ∩ srUB . Now use Proposition 4.1(b).

6.3. Proof Theorem 1.1 in a special case

We will now prove Theorem 1.1 in the case where P = B and wi = si is a simple reflection for all 1 ≤ i ≤ r .
The argument is by induction on r , as in the previous subsection. We consider the analogues p and p′ of the
morphisms m and m′

p : Y (s•) −→ X(s∗), (B1, . . . ,Br−1,Br ) 7−→ Br ,
p′ : Y (s′•) −→ X(s′∗), (B1, . . . ,Br−2,Br−1) 7−→ Br−1

and for vB in the image of p, we consider the map

ξ◦ : p−1(vB) −→ Y (v)∪Y (vsr )

(B1, . . . ,Br−1,vB) 7−→ Br−1.
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The locally triviality of p over B-orbits in its image still holds, and similarly for p′ (see the proof of
Proposition 5.3), and it suffices to establish the analogues of (i) and (ii) above. We consider the same cases as
above, and we list the possibilities for Im(ξ◦)∩Y (v) and Im(ξ◦)∩Y (vsr ) in the table below, determined in
each case with the help of Lemma 6.2.

Case Im(ξ◦)∩Y (v) Im(ξ◦)∩Y (vsr )

I.1a ∅ A
1 or ∅

I.1b ∅ ∅
I.2a A

1 −A0 or ∅ A
0 or ∅

I.2b ∅ A
0 or ∅

II.1a ∅ A
1 or ∅

II.1b ∅ ∅
II.2 A

1 −A0 or ∅ A
0 or ∅

Let us explain the meaning of entries such as “A1 −A0 or ∅,” for example in the entry in Case I.2a for
Im(ξ◦)∩Y (v). Note that v ≤ s′∗ implies that Y (v) ⊂ Im(m′), but Y (v) ⊂ Im(p′) is not automatic. However,
since p′ is B-equivariant, we have either Y (v)∩ Im(p′) = ∅ or Y (v) ⊂ Im(p′). If Y (v)∩ Im(p′) = ∅, the table
entry is ∅. If Y (v) ⊂ Im(p′), the intersection Im(ξ◦)∩Y (v) is precisely the part of Y (v) which is exactly of
relative position sr from vB, and this identifies with A

1 −A0 in the case where vsr < v.
The analogues of (i), (ii) above hold, except that here, both A1 and A2 can be empty, and when nonempty

the larger subset can be either A0, A1 −A0, or A1. The morphism p′ is trivial over every B-orbit in its
image (cf. Proposition 5.3), and by induction the nonempty fibers of p′ are paved by finite products of copies
of A1 and A

1 −A0 (use Lemma 5.2). (Here, as in the end of the proof of Proposition 5.3, we are implicitly
using that the scheme-theoretic fiber product over k of a reduced k-scheme with X is still reduced, even
if k is not perfect, if X is a k-scheme such as A

1, A1 −A0, or A
0.) Therefore, the fibers of p also have

the desired property. This proves Theorem 1.1 in the special case where P = B and each wi is a simple
reflection si . □

Remark 6.5. As in Remark 6.4, each A
1 in the table may be identified with an affine root group Uα+n, and

each A
1 −A0 may be identified with a suitable variety of nonidentity elements U ∗α+n. For example, consider

Case I.2a. Then Im(ξ◦)∩Y (v) is {Br−1 |vB
sr Br−1} ∩Y (v). We may write such Br−1 as

Br−1 = vusrB

for a unique u ∈ U ∩ srUB such that u , e. Now use Proposition 4.1(b).

Remark 6.6. In Cases I.2a and II.2, the A
0 piece is in the closure of the A

1 −A0 piece, and it is tempting to
consider the union of these as A1. Indeed, if one ignores the possibility of ∅ in Cases I.2a and II.2, the table
seems to show that in every case Im(ξ◦) is an affine space (∅, A0, or A1), and one could ask whether the
argument does not in fact prove (by induction again) that every fiber of p is paved by affine spaces. However,
one cannot ignore the empty set, and in fact in Case II.2 it is possible to have Im(ξ◦)∩Y (v) = A

1−A0 while
Im(ξ◦)∩Y (vsr ) = ∅. Letting s ∈ Saff, this happens for s• = (s1, s2) = (s, s) and v = s2 = s. This situation is
reflected by the quadratic relation in the Iwahori–Hecke algebra Ts ∗ Ts = (q − 1)Ts + qT1. In addition, even
in a special situation where Im(ξ◦) is always an affine space, the affine space paving would remain elusive,
as it is not clear that p′ would be trivial over all of Im(ξ◦) whenever it is not contained in a single B-orbit.

Remark 6.7. Remark 6.6 “explains” why we cannot hope to improve Theorem 1.1 to assert that all fibers of
YP (w•)→ XP (w∗) are paved by affine spaces. For a concrete example related to the affine Grassmannian
GrG = LG/L+P0 over a finite field k = Fq, take G = SO(5), and let

µ1 = µ2 = µ3 = α∨1 +α∨2 = (1,1),
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where the α∨i are the two simple coroots of G. Here we use notation following the conventions of [Bou68].
In [KLM, Section 8.5], it is shown that the Hecke algebra structure constant c0

µ•(q) (the coefficient of the unit

element in the product 1Ktµ1K ∗ 1Ktµ2K ∗ 1Ktµ3K for K = L+P0(Fq)) satisfies c0
µ•(q) = q5 − q. This shows that

the fiber over the base point e0 of YL+P0(µ•)→ XL+P0(|µ•|) cannot be paved by affine spaces over Fq.

7. Proof of Theorem 1.1

7.1. Schubert cells in FlB as convolution spaces

If τs1 · · ·sr = w is a reduced expression, we sometimes write Y (τs1 · · ·sr ) for Y (w). This Schubert cell has
the following well-known moduli description of its k-points.

Lemma 7.1. Fix the reduced expression w = τs1 · · ·sr as above.
(a) Giving a k-point of Y (w) is equivalent to giving a k-point of τ−1Y (w), which is equivalent to giving a

sequence of Iwahori subgroups (B0,B1, . . . ,Br ) such that

B =: B0
s1 B1

s2 B2
s3 · · · sr Br .

(b) For any element y ∈ LG(k), giving a k-point of y−1Y (w) is equivalent to giving a sequence of Iwahori
subgroups (B0,B1, · · · ,Br ) such that

y−1
B =: B0

s1 B1
s2 B2

s3 · · · sr Br .

Proof. In both cases, note that τ normalizes the Iwahori B. □

7.2. Proof of Theorem 1.1 for P =B

Consider the morphism pw•,B : YB(w•)→ XB(w∗). For each 1 ≤ i ≤ r, we choose a reduced expression

wi = τisi1 · · ·sini
for sij ∈ Saff and τi ∈Ω. Since conjugation by τi normalizes B, permutes Saff, and preserves the Demazure
product, we may reduce the study of fibers to the case where each τi is 1. Then we have

w∗ = s11 ∗ · · · ∗ s1n1
∗ s21 ∗ · · · ∗ s2n2

∗ · · · · · · ∗ sr1 ∗ · · · ∗ srnr =: s∗∗.

By Lemma 7.1, the morphism pw•,B is identified with the morphism ps••,B : Y (s••)→ X(s∗∗). By Section 6.3,
its fibers possess the required pavings. □

7.3. Proof of Theorem 1.1 in general

Let C be the class of k-varieties which are finite products of copies of A1 and A
1 −A0.

We consider the morphism p = pw•,P : YP (w•)→ XP (w∗) and suppose vP lies in the image. We prove
that the reduced fiber p−1(vP ) has a C-paving by induction on r . As before, consider the morphism
p′ : YP (w1, . . . ,wr−1)→ FlP given by (P1,P2, . . . ,Pr−1) 7→ Pr−1, and, by a slight abuse, its restriction ξ◦ =
p′ |p−1(vP ) : p−1(vP )→ FlP , defined by (P1, . . . ,Pr−1,vP ) 7→ Pr−1. We have

Im(ξ◦) = Im(p′)∩ vYP
(
w−1
r

)
.

We claim that for any y ∈W with corresponding B-orbit YBP (y), the reduced intersection

Im(ξ◦)∩YBP (y)

either is empty or has a C-paving. Then since such locally closed subsets cover Im(ξ◦) and since p′ is trivial
over each such subset, the C-paving of the reduced fiber p−1(vP ) will follow by our induction hypothesis
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applied to p′ (using Lemma 5.2 and Proposition 5.3). Note that if Im(p′) ∩ YBP (y) is nonempty, then
YBP (y) ⊂ Im(p′), and we are trying to produce a C-paving of the reduced intersection

YBP (y)∩ vYP (w−1
r ).

We can pass to B-orbits by writing WPw
−1
r WP =

⊔
ηm
ηmWP for ηm ∈ W a finite collection of right-f-

minimal elements. We then have a locally closed decomposition YP (w−1
r ) =

⊔
ηm
YBP (ηm). Thus we need to

show that each reduced intersection

(7.1) YBP (y)∩ vYBP (ηm)

has a C-paving. We may assume y is also right-f-minimal. It is tempting here to assert that by Lemma 4.4,
this is isomorphic to

(7.2) YB(y)∩ vYB(ηm).

However, examples show that (7.2) can be empty even when (7.1) is nonempty. The correct statement is the
following.

Lemma 7.2. Let π : FlB → FlP denote the natural projection morphism. Suppose y,z ∈W are right-f-minimal,
and v ∈W is any element. Then π induces an isomorphism of k-schemes when they are given reduced subscheme
structures

πy,zWf
: YB(y)∩

 ⊔
w∈Wf

vYB(zw)

 ∼−→ YBP (y)∩ vYBP (z).

Proof. By restricting π to the full π-preimage of the right-hand side, we obtain a proper surjective morphism

πyWf,zWf
:

 ⊔
w′∈Wf

YB(yw′)

∩
 ⊔
w∈Wf

vYB(zw)

 −→ YBP (y)∩ vYBP (z).

Since YB(y) is closed in
⊔
w′∈Wf

YB(yw′), the domain of πy,zWf
is closed in the domain of πyWf,zWf

, and
hence πy,zWf

is proper. On the other hand, πy,zWf
is a monomorphism and is surjective; both of these

statements follow from Lemma 4.4. (Take a point x ∈ YBP (y)∩ vYBP (z); by Lemma 4.4, we may write
π(x̃) = x for a unique element x̃ ∈ YB(y). Then note that automatically this x̃ also lies in the preimage
π−1(vYBP (z)).) Since πy,zWf

is a proper surjective monomorphism, it is an isomorphism on reduced subscheme
structures. □

We now apply this to (7.1) with z = ηm. It remains to prove that reduced intersections of the form

YB(y)∩ vYB(ηmw)

admit C-pavings, for any element w ∈Wf.
This reduced intersection is turn is equal to the reduced fiber over vB of the morphism

YB(y)×̃YB
(
(ηmw)−1

)
−→ XB

(
y ∗ (ηmw)−1

)
,

by the appropriate special case of Lemma 7.3 below. But each fiber of this morphism has a C-paving by
Section 7.2. □

Lemma 7.3. For any w1,w2 ∈WP \W/WP and v ∈W , we have an isomorphism of k-schemes (not necessarily
given reduced structure)

(7.3) YP (w1)∩ vYP
(
w−1

2

)
� p−1

w• (vP ).
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Proof. Each side is a scheme which is determined by the operation of étale sheafification of a certain
presheaf on the category Affk . As sheafification commutes with finite limits, it is enough to prove that
the corresponding presheaves are isomorphic. Suppose R is any k-algebra. A section of the presheaf
fiber p−1

w• (vP )(R) is a tuple of the form (PR, gPR,vPR), where PR = L+Gf(R) and where g ∈ PRw1PR and
g−1v ∈ PRw2PR. The means precisely that gPR ∈ YP (w1)(R) ∩ vYP (w−1

2 )(R). Thus the two presheaves
coincide. □

8. Proof of Corollary 1.2

This follows immediately from Theorem 1.1, as we have a decomposition into locally closed subvarieties

(8.1) XP (w•) =
⊔
v•

YP (v•),

where v• ranges over all tuples (v1,v2, . . . , vr ) ∈ WP \W/WP such that vi ≤ wi in the Bruhat order on
WP \W/WP for all i. Thus the fiber has a corresponding decomposition, and the result follows from
Theorem 1.1. □

9. Application to structure constants for parahoric Hecke algebras

Fix a nonarchimedean field F with ring of integers OF and residue field kF = Fq. Let us suppose G is
a split group over Z, and fix a Borel pair B ⊃ T in G, also split and defined over Z. This gives rise to
the extended affine Weyl group W defined using G ⊃ B ⊃ T (it agrees with the extended affine Weyl group
attached to GF ⊃ BF ⊃ TF ). For any parahoric subgroup P ⊂ G(F), consider the parahoric Hecke algebra
H(G(F)//P ) = Cc(P\G(F)/P ,C), give the structure of a unital associative C-algebra with convolution ∗
defined using the Haar measure on G(F) giving P volume 1. Consider the C-basis of characteristic functions
fw := 1PwP indexed by elements w ∈WP \W/WP . We can represent such cosets by maximal length elements
w ∈ fW f.

Proposition 9.1. For any w1,w2 ∈ fW f, we have

fw1
∗ fw2

=
∑
v∈ fW f

cvw1,w2
(q)fv ,

where the structure constant is a nonnegative integer of the form

cvw1,w2
(q) =

∑
a,b∈Z≥0

ma,b q
a(q − 1)b

for certain nonnegative integers ma,b which vanish for all but finitely many pairs (a,b).

Proof. The combinatorics of parahoric Hecke algebras over characteristic zero local fields F are the same
as those for F = Fq((t)) (the parahoric subgroups in each setting chosen to correspond to each other in the
obvious way, suitably identifying apartments for GF ⊃ TF and G

Fq((t)) ⊃ TFq((t)) and facets therein—for a
much more general statement, see [PZ13, Section 4.1.2]). Therefore, we can assume F is of the latter form.
Then note that cvw1,w2

(q) is the number of Fq-rational points in the fiber over vP of the corresponding
convolution morphism YP (w1)×̃YP (w2)→ XP (w∗). Thus the result follows from Theorem 1.1. □

This gives rise to general parahoric variants (in the equal parameter case) of combinatorial results on
structure constants for spherical affine Hecke algebras due to Parkinson [Par06, Theorem 7.2] and Schwer
[Schw06]. By virtue of the Macdonald formula (see e.g. [HKP10, Theorem 5.6.1]), the function Pλ considered
(albeit with differing normalizations) by Parkinson and Schwer agrees up to an explicit normalizing factor with
the Satake transform f ∨λ of the basis elements fλ = 1G(Fq[[t]])tλG(Fq[[t]]) above, for any dominant λ ∈ X∗(T ).
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In particular, Proposition 9.1 shows that suitably renormalized versions of the functions Cνλµ appearing in
[Schw06, Theorem 1.3] lie in Z≥0[q − 1].

10. Cellular paving of certain subvarieties in the affine Grassmannian

In this section, we will restrict our attention to certain generalizations of the intersections containing
the Mirkovic–Vilonen cycles in the affine Grassmannian. Let P = P0 = L+G, and consider the affine
Grassmannian GrG = FlP . We fix any standard parabolic subgroup P ⊃ B with Levi factorization P =MN
for a Levi subgroup M ⊃ T and unipotent radical N ⊂U . Here B = TU is the Levi decomposition of the
fixed Borel subgroup B.

We abbreviate K = L+G and note that the intersection KM := K ∩LM in LG can be identified with L+M .
We define KP := KM · LN . This is a semidirect group ind-scheme over k since KM normalizes LN . For
λ ∈ X∗(T ), denote the corresponding point by xλ := λ(t)eL+G ∈GrG(k).

Fix µ ∈ X∗(T )+. Recall [HKM12, Definition 3.1], in which we declare ν ∈ X∗(T ) satisfies ν ≥P µ provided
that

• ⟨α,ν⟩ = 0 for all T -roots α appearing in Lie(M);
• ⟨α,ν +λ⟩ > 0 for all T -roots α appearing in Lie(N ) and for all λ ∈Ω(µ).

Here Ω(µ) = {λ ∈ X∗(T ) |µ −wλ is a sum of positive coroots, for all w ∈W0}. Also, let X∗(T )+M be the
cocharacters which are dominant for the roots appearing in Lie(B∩M).

Proposition 10.1. If ν ≥P µ for µ ∈ X∗(T )+, and if λ ∈ Ω(µ) ∩ X∗(T )+M , then there is an equality of k-
subvarieties in GrG

(10.1) (t−νKtν)xλ ∩ Kxµ = KP xλ ∩ Kxµ.

Proof. The equality (t−νKtν)xλ ∩ Kxµ = KP xλ ∩ Kxµ follows on combining [HKM12, Proposition 7.1] and
[HKM12, Lemma 7.3]. The desired equality without the closures follows formally from this one. □

The left-hand side of (10.1) admits a cellular paving by Theorem 1.1. Indeed, we have an equality of
reduced subschemes

(t−νKtν)xλ ∩ Kxµ = p−1
w•,L+G (t−νeL+G) ,

for w• = (tµ, t−ν−λ); see Lemma 7.3. Hence we deduce the following result.

Corollary 10.2. For µ,λ as above, the variety L+MLN xλ ∩ L+Gxµ in GrG admits a cellular paving. In
particular, for P = B, the Mirkovic–Vilonen variety LUxλ ∩L+Gxµ admits a cellular paving.

Note that this applies to all pairs (µ,λ) ∈ X∗(T )+×X∗(T )+M : If the intersection is nonempty, then λ ∈Ω(µ)
is automatic, by [HKM12, Lemma 7.2(b)].

11. Paving results over Z

The goal of what follows is to extend the constructions and results above to work over Z. Because there is
no building attached to a group over Z[[t]], the main challenge is to give purely group-theoretic arguments
for certain results which are usually proved with the aid of buildings.

11.1. Basic constructions over Z

We shall recall the basic notions attached to groups over Z. One useful reference is [RS20, Section 4], but
in places we have chosen a slightly different way to justify the foundational results (for example, we do not
assume the existence of the Demazure resolutions over Z—a result stated without proof in [Fal03]—and
instead we construct them as a special case of the convolution morphisms over Z).
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We assume G is a reductive group over Z, more precisely, a smooth affine group scheme over Z whose
geometric fibers are connected reductive groups, and which admits a maximal torus T over Z, which is
automatically split (see [Con14, Section 6.4, Example 5.1.4]). We fix a Borel pair over Z, given by G ⊃ B ⊃ T
(Borel subgroups B ⊃ T exist, by e.g. [Con14, Proof of Theorem 5.1.13]). Following [RS20, Section 4],
we have the usual objects: the standard apartment endowed with its Coxeter complex structure given
by the affine roots, the base alcove a and other facets f therein, the Weyl group W0, the Iwahori–Weyl
group W , the affine Weyl group Waff, and the stabilizer subgroups Wf ⊂Waff. The Iwahori–Weyl group
W :=NG(T )(Z((t)))/T (Z[[t]]) can be identified with the extended affine Weyl group X∗(T )⋊W0, where using
[Con14, Proposition 5.1.6] we may identify W0 =NG(T )(Z[[t]])/T (Z[[t]]). As X∗(T )⋊W0 remains unchanged
upon base changing along Z→ k for any field k, it inherits a Bruhat order ≤ as in the classical theory over
a field. Similarly, the apartment is canonically identified with the apartments attached to (G

Q((t)),TQ((t))) or
(G

Fp((t)),TFp((t))) for any prime number p.
We define in the obvious way the positive loop group L+G

Z
(a pro-smooth affine group scheme over

Z) and the loop group LG
Z

(an ind-affine group ind-scheme over Z). For representability, see e.g. [HR20,
Lemma 3.2].

The following result is essentially due to Pappas and Zhu, and this precise form was checked jointly with
Timo Richarz. This is a very special case of the general construction due to Lourenço, in [Lou23, Section 3].

Lemma 11.1. Let f be any facet of the apartment corresponding to T in the Bruhat–Tits building of G(Q((t))), and
let Gf

Q

be the associated parahoric Q[[t]]-group scheme with connected fibers and with generic fiber G⊗
Z
Q((t)).

Then there exists a unique smooth affine fiberwise connected Z[[t]]-group scheme Gf of finite type extending Gf
Q

with the following properties:

i) There is an identification of Z((t))-groups Gf ⊗Z[[t]] Z((t)) = G⊗
Z
Z((t)).

ii) For every prime number p, the group scheme Gf ⊗Z[[t]] Fp[[t]] is the Bruhat–Tits group scheme with connected
fibers for G⊗

Z
Fp((t)) associated with f.

Proof. This is proven in [PZ13, Section 4.2.2]. Note that the base ring in loc. cit. is the polynomial ring
O[t], where O is discretely valued. The same proof remains valid over the base ring Z[[t]] using [BT84,
Section 3.9.4]. □

For each f, we define the “parahoric” subgroup L+Gf ⊂ LGZ
, and we often abbreviate by writing

P
Z

:= L+Gf. This has the property that for each homomorphism Z→ k for k a field, we have P
Z
⊗
Z
k � Pk ,

where the latter is the object defined earlier when working over the field k. We define the (partial) affine flag
variety

FlP ,Z = (LG
Z
/P

Z
)ét ,

the étale sheafification of the quotient presheaf on Aff
Z

. This is represented by an ind-projective ind-scheme
over Z; see [HR20, Corollary 3.11], where the proof is given for objects defined over O[t] for any noetherian
ring O – a similar proof works in our setting over Z[[t]].

We denote the base point in FlP ,Z by eP ,Z.
We have a notion of a negative parahoric loop group and a corresponding open cell in FlP ,Z. We

define L−−G
Z

:= ker(L−G
Z
→ G

Z
), t−1 7→ 0, where L−G

Z
(R) = G(R[t−1]). Following [dCHL18], we define

L−−Ga,Z = L−−G
Z
⋊U

Z
. Then for any facet f in the closure of a, we define the negative parahoric loop

group

(11.1) L−−Gf,Z :=
⋂
w∈Wf

w(L−−Ga,Z),

the intersection being taken in LG
Z

.

Lemma 11.2. The multiplication map L−−Gf,Z × L+Gf,Z → LG
Z
is representable by a quasi-compact open

immersion.
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Proof. This is proved in the same way as [HLR18, Lemma 3.6], which proves the analogous result when the
base ring is a ring of Witt vectors W instead of Z; the same argument works for our group schemes Gf,Z
over D

Z
:= Z[[t]]. We omit the details. A proof in a more general context is due to Lourenço; see [Lou23,

Corollary 4.2.11], which also points out that the multiplication morphism is affine (hence automatically
quasi-compact). □

From now on, we often write G for Gf and P
Z

for L+Gf.
We recall the interpretation of partial affine flag varieties in terms of suitable spaces of torsors. For any

ring R, set DR = Spec(R[[t]]) and D∗R = Spec(R((t))). Recall that we define the sheaf GrG on Aff
Z

to be the
functor sending R to the set GrG(R) of isomorphism classes of pairs (E ,α), where E is a right étale torsor for
GDR = G ×D

Z

DR over DR, and where α ∈ E(D∗R), that is, α is an isomorphism of GD∗R-torsors E0|D∗R
∼→E|D∗R ,

where E0 is the trivial GDR-torsor. The left action of g ∈ LG(R) on GrG(R) sends (E ,α) to (E ,α ◦ g−1). Then
GrG(R) � FlP ,Z(R), functorially in R (see e.g. [HR20, Lemma 3.4]).

Remark 11.3. For the groups G over Z we consider, one can show using negative parahoric loop groups
that the morphism LG

Z
→ FlP ,Z has sections locally in the Zariski topology, and hence for any semi-local

ring R, we have FlP ,Z(R) = LG
Z

(R)/P
Z

(R). This can be seen by reducing to the case of fields, as in [RS20,
Section 4.3]. One can also deduce it from a recent result of Česnavičius [Čes22, Theorem 1.7] that the affine
Grassmannian GrG,Z agrees with the Zariski sheafification of the presheaf quotient LG

Z
/L+G

Z
. To use this

to prove the corresponding result for a general parahoric P
Z

, one first deduces the result for P
Z

= B
Z

, using
the lifting for P

Z
= L+G

Z
and the fact that the fiber of FlB,Z→GrG,Z over the base point is (G/B)

Z
and

G→ (G/B)
Z

is Zariski-locally trivial. Then, finally, one uses the topological surjectivity of FlB,Z→ FlP ,Z
to prove that a cover given by translates of the big cell in the source maps to a cover of translates of the
big cell in the target. In fact one can use translates wL−−GaeB,Z for w ∈W to cover FlB,Z, thanks to the
Birkhoff decomposition of LG over fields (see [Fal03, Lemma 4]). I am grateful to Thibaud van den Hove for
a clarifying discussion about this remark, which we shall not need in the rest of this article.

Lemma 11.4. Fix a ring R and (E ,α) ∈GrG(R). Then the presheaf GrG,E ,α sending Spec(R′)→ Spec(R) to the
set of isomorphism classes of pairs (E ′ ,α′) consisting of a GDR′ -torsor E

′→DR′ and an isomorphism of GD∗R′ -torsors
α′ : ED∗R′

∼→E ′D∗R′ is representable by an ind-projective ind-flat ind-scheme over R.

Proof. If we fix a representative (E ,α) within its isomorphism class, then the map

(E ′ ,α′) 7−→ (E ′ ,α′ ◦α)

is a well-defined isomorphism of presheaves GrG,E ,α
∼→GrG × Spec(R). Now recall that GrG is ind-flat over

Z by adapting the proof of [HLR18, Proposition 8.9], or by reducing to the case P
Z

= L+G
Z

and then
invoking [HLR18, Prop, 8.8]. □

11.2. Ingredients needed for paving over Z

11.2.1. Iwahori decompositions of B
Z
and U

Z
. Our choice of base Iwahori subgroup B

Z
is compatible

with our choice of Borel subgroup B = TU over Z in the following sense: For any algebra R, we have

B
Z

(R) =
{
g ∈ L+G

Z
(R) | ḡ ∈ B(R)

}
,

where ḡ is the image of g under the canonical projection L+G
Z

(R)→ G(R). We define the pro-unipotent
radical U

Z
⊂ B

Z
by requiring U

Z
(R) to be the preimage of U (R) under the projection g 7→ ḡ . Let T

Z

denote the group scheme T
Z

= L+T
Z

. Let B = TU be the Borel subgroup such that B∩B = T . For any
integer m ≥ 1, let L(m)G

Z
(R) denote the kernel of the natural homomorphism L+G

Z
(R)→ G(R/tmR). Write

T (1)
Z

:= L(1)T
Z

.
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Proposition 11.5. The group schemes B
Z
and U

Z
possess Iwahori decompositions with respect to B = TU ; that is,

there are unique factorizations of functors

B
Z

=
(
B
Z
∩LU

Z

)
· T

Z
· (B

Z
∩LU

Z
) ,(11.2)

U
Z

=
(
U
Z
∩LU

Z

)
· T (1)

Z
· (B

Z
∩LU

Z
) .(11.3)

Proof. First we note that the uniqueness in the decomposition follows from the uniqueness of the decomposi-
tion in the big cell in U · T ·U in G.

We shall prove only the first decomposition (the second is completely similar). Consider g ∈ B
Z

(R), with
reduction modulo t given by ḡ = b̄ for some b ∈ B(R) ⊂ L+B

Z
(R). Then g(1) := gb−1 ∈ L(1)G

Z
(R), and it

suffices to show this element lies in

(11.4)
(
B
Z
∩L(1)U

Z

)
· T (1)

Z
·
(
B
Z
∩L(1)U

Z

)
.

The filtration · · · ⊂ L(m+1)G
Z
⊂ L(m)G

Z
⊂ · · · ⊂ L+G

Z
has abelian quotients isomorphic to Lie(G)

Z
=

Lie(U )
Z
⊕Lie(T )

Z
⊕Lie(U )

Z
. We claim that we can write

g(1) = lim
m→∞

ūm · tm ·um

with ūm, tm,um lying in the R-points of the appropriate factors of (11.4), and such that the limit converges
in the t-adic topology. Indeed, decomposing the image modulo t2 of g(1) in terms of the Lie algebra and
lifting, we can write

g(1) = ū(1,2) · g(2) · t(1,2) ·u(1,2),

where ū(1,2) ∈ L(1)U
Z

, t(1,2) ∈ L(1)T
Z

, and u(1,2) ∈ L(1)U
Z

and where g(2) ∈ L(2)G
Z

. Here we have used that
ū(1,2) normalizes L(2)G

Z
. We then repeat this process with g(2) and get an expression

g(1) =
(
ū(1,2)ū(2,3)

)
· g(3) ·

(
t(1,2)t(2,3)

)
·
(
u(2,3)u(1,2)

)
,

where g(3) ∈ L(3)G
Z

and where ?(2,3) refers to a component of g(2) lying in an appropriate L(2)? group,
with g(3) viewed as an “error term.” Here we have used again the normality of L(m)G

Z
in L+G

Z
, the

commutativity of L+T
Z

, and the fact that L+T
Z

normalizes each L(m)U
Z

. Continuing this, we define the
sequences ū(m−1,m), t(m−1,m), u(m−1,m), and g(m) and then set

ūm = ū(1,2) · · · ū(m−1,m),

tm = t(1,2) · · · t(m−1,m),

um = u(m−1,m) · · ·u(1,2).

In the t-adic topology, these products converge, and the terms g(m) approach the identity element e ∈ G.
Hence this proves the claim, and thus the proposition. □

11.2.2. Proposition 4.1 over Z.

Proposition 11.6. The analogue over Z of Proposition 4.1 holds.

Proof. There are only finitely many affine roots a such that Ua,Z is contained in U
Z
∩ vUP ,Z, namely the

finitely many a with a > 0 and v−1a
f
< 0. By the Iwahori decomposition Proposition 11.5 and the root group

filtrations in U
Z

and U
Z

, we easily see that there exist finitely many positive affine roots a1, . . . , aN such that

(11.5) U
Z

=Ua1,Z · · ·UaN ,Z (U
Z
∩ vP

Z
).

In what follows, we suppress the subscript Z. Give a total order ⪯ to the set of positive affine roots ai in this
list, by letting a ≺ b if and only if a(x0) < b(x0) for a suitably general point x0 ∈ a. Let r1 ≺ r2 ≺ · · · ≺ rM be

the totally order subset of the ai with the property that v−1ri
f
< 0. The root group Ur1 appears finitely many
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times in (11.5). Starting from the left, we commute the first Ur1 to the left past any preceding groups Ub. By
the commutator relations (e.g. [dCHL18, Equation (3.6)]), in moving all the Ur1 groups all the way to the left,
we introduce finitely many additional affine root groups Uc with r1 ≺ c. Then we consider the part of the

product which now involves only root groups of the form Ur2 , . . . ,UrM and certain Uc with v−1c
f
≥ 0. Then

we repeat the above process with r2 in place of r1. Continuing, we eventually move all the Ur factors with

v−1r
f
< 0 all the way to the left. We have proved that

(11.6) U =
∏
r

Ur (U ∩ vP ),

where r ranges over the affine roots with r > 0 and v−1r
f
< 0. We claim that the obvious inclusion∏

rUr ⊂ U ∩ vUP is an equality and the resulting product is a decomposition. Both statements follow easily
using the theory of the big cell, Lemma 11.2. □

Corollary 11.7. The analogues over Z of Propositions 4.4 and 5.3 hold.

11.2.3. Schubert cells and Schubert schemes over Z. Fix w ∈W , and fix a lift ẇ ∈NGT (Z[[t]]) of w.
We usually suppress the dot from now on since no construction depends on this choice. The group P

Z
acts

on the left on FlP ,Z; we define the Schubert scheme XP ,Z(w) ⊂ FlP ,Z to be the scheme-theoretic image of the
morphism

P
Z
−→ FlP ,Z, p 7−→ pẇeP ,Z.

Similarly, we can define XQP ,Z(w) for any parahoric subgroup Q
Z

; in particular, we have XBP ,Z.
We define YP ,Z(w) ⊂ FlP ,Z to be the étale sheaf-theoretic image of the morphism of sheaves P

Z
→ FlP ,Z,

p 7→ pẇeP , and as before we define similarly YQP ,Z for any parahoric subgroup Q
Z
⊂ LG

Z
.

Lemma 11.8. Let P
Z
⊂ LG be the parahoric subgroup fixed above (similar statements apply to any Q-orbits in

FlP ,Z).

(a) The scheme XP ,Z(w) is an integral scheme which is projective and faithfully flat over Spec(Z), and
XP ,Z(w)⊗Q = XP ,Q(w).

(b) The morphism YP ,Z(w)→ FlP ,Z of étale sheaves factors canonically as

YP ,Z(w) −→ XP ,Z(w) −→ FlP ,Z,

and the first morphism is represented by a quasi-compact open immersion of schemes.
(c) The scheme YP ,Z(w) is smooth over Spec(Z), and its formation commutes with base change along an

arbitrary homomorphism Z→ R.

Proof. The projectivity in (a) is proved in [RS20, Definition 4.3.4 and what follows]. Part (b) can be proved by
adapting the argument of [Ric16, Corollary 3.14]. Part (c) holds since YP ,Z(w) is the orbit under a smooth
group scheme over Z. Hence YP ,Z(w)⊗Q = YP ,Q(w).

The formation of the scheme-theoretic image of a quasi-compact morphism commutes with flat base
change (see [Sta24, Lemma 29.25.16]). So the generic fiber of XP ,Z(w) is the schematic-closure of YP ,Q(w)
in FlP ,Q; that is, XP ,Z(w)⊗Q = XP ,Q(w). Now the flat closure of the latter in XP ,Z contains the scheme-
theoretic closure of YP ,Z(w), which is all of XP ,Z(w). This shows that the latter is faithfully flat over Z.
Clearly, XP ,Z(w) is irreducible since it is the scheme-theoretic image of a morphism with irreducible source.
Moreover, XP ,Z(w) is reduced since is it the flat closure of a Q-variety. □

11.2.4. Reduction to neutral element of Ω. In the theory over fields k, it is easy to see that τ ∈Ω has
the property that τ normalizes the standard Iwahori subgroup Bk ⊂ LGk corresponding to the base alcove a.
We need to know that this remains true over Z.

Lemma 11.9. If τ ∈Ω, then τB
Z

= B
Z
as subgroups of LG

Z
.
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Proof. The identification follows by the uniqueness characterization of the group scheme Ga,Z in Lemma 11.1
and the fact that it holds after base change to every field k. □

11.2.5. Twisted products over Z. As above we fix P
Z

= L+Gf,Z. Again abbreviate G := Gf,Z. Fix r ∈N,
and consider the right action of P r

Z
on LGr

Z
given by the same formula as (3.1).

Definition 11.10. We define the r-fold twisted product

G̃rG := LG
Z
×PZ LG

Z
×PZ · · · ×PZ LG

Z
/P

Z
=: GrG×̃ · · · ×̃GrG

to be the étale quotient sheaf for the presheaf (LG
Z

)r /(P
Z

)r defined above.

It is clear from the fact that every G-bundle over DR is trivializable over DR′ for some étale ring extension
R→ R′ that we can identify G̃rG(R) with the set of equivalence classes of tuples

(E•,α•) = (E1, . . . ,Er ;α1, . . . ,αr )

such that each Ei is a GDR-torsor over DR and the αi : Ei−1|D∗R
∼→ Ei |D∗R are isomorphisms of GD∗R-torsors

over D∗R for all i = 1, . . . , r (with the convention that E0 is the trivial torsor).

Lemma 11.11. The sheaf LG
Z
×PZ LG

Z
×PZ · · · ×PZ LG

Z
/P

Z
is represented by an ind-proper ind-scheme which is

faithfully flat over Z.

Proof. We proceed by induction on r . The case r = 1 is clear: The ind-flatness of GrG→ Spec(Z) is proved
by an easy reduction to the case P

Z
= L+G

Z
, which is then handled by [HLR18, Proposition 8.8].

Now assume r > 1 and that the result holds for r − 1-fold quotients. The projection onto the first factor
gives a morphism

p : LG
Z
×PZ LG

Z
×PZ · · · ×PZ LG

Z
/P

Z
−→ LG

Z
/P

Z
.

Now the induction hypothesis and the proof of Lemma 11.4 show that this morphism is representable by an
ind-proper ind-flat ind-scheme, and hence the total space is represented by an ind-scheme.

Locally in the étale topology on the target, p is locally trivial with flat fiber, hence is flat. It follows that
the source of p is flat over Z.

It remains to prove the source of p is proper over Z. We know that ind-locally in the étale topology
on the target, LG→GrG has sections and hence after passing to an étale cover p becomes Zariski-locally
trivial with fibers which are ind-proper over Z, by using translates of the big cell (see Lemma 11.2). Since
properness descends along étale covers, we conclude that p is ind-proper, as desired. □

Let w ∈ W . Denoting the quotient morphism by q : LG
Z
→ FlP ,Z, note that P

Z
wP

Z
= q−1(YP ,Z(w))

(an equality of étale subsheaves of LG
Z

), where by definition P
Z
wP

Z
denotes the étale sheaf quotient

P
Z
×w,PZ P

Z
of P

Z
×P

Z
by the right action of P

Z
∩wP

Z
w−1 given by (p,p′) · δ = (pδ,w−1δ−1wp). In this

vein, we define ˜P
Z
wP

Z
:= q−1(XP ,Z(w)).

Definition 11.12. Let w• = (w1,w2, . . . ,wr ) ∈W r . We define

YP ,Z(w•) := P
Z
w1PZ ×PZ PZw2PZ ×PZ · · · ×PZ PZwrPZ/PZ = YP ,Z(w1)×̃YP ,Z(w2)×̃ · · · ×̃YP (wr ),

XP ,Z(w•) := ˜P
Z
w1PZ ×PZ ˜P

Z
w2PZ ×PZ · · · ×PZ ˜P

Z
wrPZ/PZ = XP ,Z(w1)×̃XP ,Z(w2)×̃ · · · ×̃XP (wr )

to be the étale quotient sheaves as in Definition 11.10.

Lemma 11.13. The sheaves XP ,Z(w•) and YP ,Z(w•) are represented by integral schemes which are of finite type
and flat over Z. Moreover, XP ,Z(w•) is proper over Z.

Proof. The proof goes by induction on r, in the same manner as the proof of Lemma 11.11. □
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11.2.6. Demazure morphisms and closure relations over Z. We need to construct the Demazure
resolutions over Z. This is stated without proof in [Fal03] and is implicit in some literature (e.g. [PR08, RS20]),
but we think some extra discussion is needed.

For s ∈ Saff, let Gs,Z := Gf,Z, where f is the facet fixed by s. Let Ps,Z = L+Gs,Z. We have Ps,Z = B
Z
∪B

Z
sB

Z

as schemes (to show this we use Lemma 11.8(c) and the fact that the inclusion B
Z

(R)∪B
Z
sB

Z
(R) ↪→Ps,Z(R)

is surjective when R is any field, but we warn that this equality fails for general R, in particular for R = Z).
We have an identification P

1
Z

= Ps,Z/BZ. Furthermore, the foregoing shows we have an open immersion
A

1
Z

= B
Z
sB

Z
/B

Z
↪→ P

1
Z

with closed complement A0
Z

= B
Z
/B

Z
↪→ P

1
Z

. The BN-pair relations hold.

Lemma 11.14. For any w ∈W and s ∈ Saff, we have equalities of sub-ind-schemes in LGZ

B
Z
wB

Z
sB

Z
=

BZwsBZ if w < ws,

B
Z
wB

Z
∪B

Z
wsB

Z
if ws < w.

Proof. Both cases are proved by induction on ℓ(w). The first case follows from the case of fields and
Lemma 11.8(c). For the second case, it is enough to prove the result for w = s. But B

Z
sB

Z
sB

Z
=

B
Z
sB

Z
∪B

Z
= Ps,Z follows because Ps,Z is a group subscheme of LG

Z
and sB

Z
s 1 B

Z
. □

Let w = s1 · · ·sr be a reduced word in W . Consider the Demazure morphism given by projecting to the
final coordinate:

ms•,Z : D(s•)Z := Ps1,Z ×
B
Z Ps2,Z ×

B
Z · · · ×BZ Psr ,Z/BZ −→ XB,Z(w).

The image lies in XB,Z(w) by flatness and properness, and by the fact that this holds over Q. By the BN-pair
relations, it gives an isomorphism over YB,Z(w). Furthermore, it implies the closure relations

(11.7) XP ,Z(w) =
⊔
v

YP ,Z(v),

where v ∈WP \W/WP is such that v ≤ w in the Bruhat order on WP \W/WP . In particular, we see that
˜P
Z
wP

Z
=
⊔
v PZvPZ. Here and in (11.7) the union indicates a union of locally closed subschemes, and every

subscheme appearing is reduced by construction.
With the existence of Demazure resolutions over Z in hand, one can prove the following result by copying

the argument of [HLR18, Proposition 3.4] (Demazure resolutions over Z are used to prove that Schubert
varieties attached to simply connected groups over a field k are normal, following the argument in [PR08,
Section 9]).

Corollary 11.15. For any field k, (XP ,Z(w)⊗
Z
k)red = XP ,k(w). Further, XP ,Z(w)⊗

Z
k is reduced if and only if

XP ,k(w) is normal.

11.2.7. Convolution morphisms over Z. Given the BN-pair relations involving subschemes of LG
Z

, we
have the following.

Lemma 11.16. For any w• = (w1,w2, . . . ,wr ) ∈W r with Demazure product

w∗ := fwf
1 ∗

fwf
2 ∗ · · · ∗

fwf
r ,

we have the convolution morphisms and uncompactified convolution morphisms over Z:

mw•,PZ : XP ,Z(w•) −→ XP ,Z(w∗),

pw•,PZ : YP ,Z(w•) −→ XP ,Z(w∗).

Lemma 11.17. The analogues of Lemma 7.3 and Corollary 10.2 hold over Z.

Proof. The proof of Lemma 7.3 carries over. Then using this, and interpreting retractions group-theoretically
(see Remarks 6.4 and 6.5), we see that the proof of Corollary 10.2 also carries over. □
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11.3. Main results over Z

The following theorem gives the Z-versions of Corollaries 1.2 and 10.2.

Theorem 11.18. In the notation above, for any v ∈W , the reduced fiber m−1
w•,PZ(v eP

Z

) has a cellular paving
over Z; that is, it is paved by finite products of A1

Z
and A

1
Z
−A0

Z
. Further, for every standard parabolic

subgroup P
Z

=M
Z
N

Z
⊂ G

Z
and every pair of cocharacters (µ,λ) ∈ X∗(T )+ ×X∗(T )+M , the reduced intersection

L+M
Z
LN

Z
xλ ∩L+G

Z
xµ in GrG

Z

has a cellular paving over Z.

Note that the second statement gives an alternate proof of a recent result of Cass–van den Hove–Scholbach,
namely [CvdHS22, Theorem 1.2].

Proof. The proofs of the results over fields can be directly imported to the context over Z, using in particular
Corollary 11.7, Lemma 11.9, Lemma 11.14, Equation (11.7), and Lemma 11.17. With these tools in hand, the
proof over fields works over Z with no changes. Note that we do not really need the language of retractions
at any point in the proof: Every fact justified using retractions is equivalent to a purely group-theoretic
statement. See for example Remarks 6.4 and 6.5. □

12. Errata for [dCHL18]

We take this opportunity to point out a few minor mistakes in [dCHL18]. In [dCHL18, Proposition 3.10.2],
we stated that all Schubert varieties XP (w) in partial affine flag varieties FlP are normal. This is true for
classical Schubert varieties (those contained in G/P for a parabolic subgroup P in G) but is false in general.
Pappas and Rapoport proved in [PR08] that normality does hold for all affine Schubert varieties attached to
G over a field k, as long as the characteristic of k is coprime to the order of the Borovoi fundamental group
π1(Gder) (see [Bor98]). However, when char(k) divides |π1(Gder)|, it is proved in [HLR18, Theorem 2.5] that
most Schubert varieties in FlP are not normal.

The normality of Schubert varieties is invoked in [dCHL18, Corollary 4.1.4] to prove that the convolution
space XP (w•) is normal. This also fails in general but is true when char(k) ∤ |π1(Gder)|. In addition,
normality of Schubert varieties is used in one of the proofs in [dCHL18] that the fibers of convolution
morphisms XP (w•)→ XP (w∗) are geometrically connected. More precisely, a normality hypothesis plays a
role in [dCHL18, Proposition 4.4.4], which in turn is used to prove the geometric connectedness of the fibers
in [dCHL18, Corollary 4.4.5]. This proof is not valid in general but is valid, again, under the hypothesis
char(k) ∤ |π1(Gder)|. Fortunately, in [dCHL18, Theorem 2.2.2], another proof of the geometric connectedness
of the fibers is given, which does not rely on any normality of Schubert varieties.

Furthermore, the polynomials Fp,v(q) appearing in [dCHL18, Equation (2.1)] were defined incorrectly as
the Poincaré polynomials of the fibers p−1(vB). They are rather the functions

Fp,v(q) = tr
(
Frobq ,

∑
i

(−1)i Hi(p−1(vB) , ICXB(w•))
)
.

The fact that Fp,v(q) ∈Z≥0[q] is not a priori obvious, but it follows from [dCHL18, Equation (2.1)].
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