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convolution morphisms attached to parahoric affine flag varieties are paved by products of affine
lines and affine lines minus a point. This applies in particular to the affine Grassmannian and to
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1. Introduction and main results

Let G be a split connected reductive group over any field k. Let W be the Iwahori-Weyl group of
LG(k) = G(k((t))), and for each r-tuple wy = (wy,...,w,) € W' and choice of standard parahoric subgroup
P c LG(k), consider the convolution morphism

my, p: Xp(w,) := Xp(w1)X- - xXp(w,) — Xp(w,)

defined on the twisted product of Schubert varieties Xp(w;) C Flp (see Sections 2 and 3). Such morphisms
have long played an important role in the geometric Langlands program and in the study of the geometry
of Schubert varieties. For example, if w, = (s1,...,5,) is a sequence of simple affine reflections, w =51 ---s,
is a reduced word, and P is the standard Iwahori subgroup 5, then Xp(s,) — Xp(w) is the Demazure
resolution (of singularities) of Xz(w). If P = L* G is the positive loop group and w, = ye = (yy,..., ;) is a
tuple of cocharacters in G, the corresponding convolution morphism is used to define the convolution of
L* G-equivariant perverse sheaves on the affine Grassmannian Grg = LG/L" G, and hence it plays a key role
in the geometric Satake correspondence.

Numerous applications stem from the study of the fibers of convolution morphisms, their dimensions
and irreducible components, and possible pavings of them by affine spaces or related spaces. This article
will focus on pavings of fibers by affine spaces, or by closely related spaces. We recall that a variety
X is paved by varieties in a class C provided that there exists a finite exhaustion by closed subvarieties
0 =X C Xy C---C X; =X such that each locally closed difference X; — X;_; for 1 <i <r is isomorphic to
a member of the class C.
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The fact that the fibers of Demazure resolutions admit pavings by affine spaces was for a long time
a folklore result, until a proof appeared in [Hai05] and later more generally in [dCHLI18] (see [dCHLIS,
Theorem 2.5.2]). This has been used in proving various parity vanishing and purity results in Kazhdan-
Lusztig theory, see [Hai05, dCHLI18], and in the geometric Satake correspondence; see [Gai0l, MV07, Ricl4].
The paving of certain fibers related to the affine Grassmannian for GL,, gives a different approach to paving
by affines of some Springer-Spaltenstein varieties, which are certain partial Springer resolutions of the
nilpotent cone for GL,; see [Hai06, Proposition 8.2 and what follows] and [Spa76].

One could conjecture that all fibers of general convolution morphisms Xp(w,) — Xp(w,) are paved by
affine spaces. In the special case of a sequence of minuscule cocharacters w, = p, and the associated
convolution morphism Xj+g(p,) = Xr+g(|pe|) for the affine Grassmannian Grg = LG/L*G, this was
proved in [Hai06, Corollary 1.2]. In general for the affine Grassmannian, it is not known which fibers are
paved by affine spaces (see [Hai06, Question 3.9]). The existence of an affine space paving of fibers of
my, p in the general case seems to be an interesting open question—and the author is not aware of any
counterexamples. One can consider the analogous question of when fibers of uncompactified convolution
morphisms Yp(w,) = Xp(w,) are paved by affine spaces. This turns out to usually fail (for examples, see
Remarks 6.6 and 6.7 below). However, a weaker result does always hold. (As was implicit in the above
discussion, in the following statements, all fibers are the scheme-theoretic fibers endowed with their induced
reduced subscheme structure.)

Theorem 1.1. Every fiber of a convolution morphism Yp(w,) — Xp(w,) is paved by finite products of copies of
Al and A' - A°.

As a corollary, we obtain the following result on fibers of the usual convolution morphisms.

Corollary 1.2. Every fiber of any convolution morphism Xp(w,) — Xp(w,) is paved by finite products of copies
of A' and A' — AO.

The previous two results show that the fibers in question are similar to cellular k-schemes, in the sense of
[RS20, Definition 3.1.5]. We adopt a similar terminology and declare that they admit cellular pavings. (This
reflects a technical point: Here, we do not prove the stratification property, the property that the closure of
each stratum is a union of strata.) A weaker version of Corollary 1.2 was stated without proof in [dCHLIS,
Remark 2.5.4|. The proof is given here in Sections 6, 7, and 8.

One situation where paving by affine spaces is known is given by the following result.

Theorem 1.3. Suppose wy = s, = (51,52,...,5,) is a sequence of simple reflections with Demazure product
S, =51 *Sp*---%5,. Then the fibers of X5(s,) — Xp(s.) are paved by affine spaces.

This theorem was proved in [dCHLI18, Theorem 2.5.2]. However, here we give a different proof, which has
the advantage that it can be easily adapted to prove the special case of Theorem 1.1 where P = BB and every
w; is a simple reflection. This in turn is used to prove the general case of Theorem 1.1.

The results above should all have analogues at least for connected reductive groups G which are defined
and tamely ramified over a field k((t)) with k perfect (see Remark 4.2). The proofs will necessarily be more
involved and technical, and the author expects them to appear in a separate work.

In Section 11, we extend all the preceding results over Z. We prove in that section the following result
(Theorem 11.18), the second part of which recovers [CvdHS22, Theorem 1.2].

Theorem 1.4. Assume Gz D By D Ty is a connected reductive group over Z with Borel pair defined over
Z. Consider a parahoric subgroup Py and the associated Schubert schemes Xp 7z(w) C Flp 7. The convolution
morphisms attached to w, = (wq,...,w,) € W' may be constructed over Z,

My, p,: Xpz(We) — Xpz(w.),
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and for any v < w,, the reduced fiber m;l’pz(v ep,) has a cellular paving over Z. Furthermore, for any standard
parabolic subgroup Pz = Mz Nz and any pair (u, A) € X.(T)"xX.(T)™, the subscheme L"MzLN7zx,NL*Gzx,
of the affine Grassmannian Grg z, with its reduced subscheme structure, has a cellular paving over Z.

Leitfaden

Here is an outline of the contents of this article. In Sections 2 and 3, we give our notation and recall
the basic definitions related to convolution morphisms. The main idea of the proof of Theorem 1.1 is to
prove it by induction on r: One projects from the fiber onto the r — 1 term in the twisted product; then one
needs to show that the image is paved by locally closed subvarieties, each of which has a C-paving, and
over which the aforementioned projection morphism is trivial. The strategy of proof is given in more detail
in Section 6.2. The required triviality statements are proved in Sections 4 and 5. The core of the article
is found in Sections 6- 8. First, Theorem 1.3 is proved in Section 6.2, and this proof is then adapted to
prove the special case of Theorem 1.1 for P = B and all w; simple reflections, in Section 6.3. This is used to
deduce the special case of Theorem 1.1 with P = B in Section 7.2. Finally, the general case of Theorem 1. is
proved in Section 7.3, using the previous special cases as stepping stones. In Section 8, we quickly deduce
Corollary 1.2 from Theorem 1.1. In Section 9, we give an application to structure constants for parahoric
Hecke algebras. In Section 11, we develop all the needed machinery to extend the above results over Z. The
paper ends with Errata for [dCHLI8] in Section 12.
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me to write up these results. I also thank him for helpful comments on an early version of this paper, and
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helpful remarks and suggestions.

2. Notation

Generally speaking, we follow the same notation and conventions as [dCHLI18]. Let G be a split connected
reductive group over a field k with algebraic closure k and separable closure k*¢P. Fix a Borel pair GD B> T,
also split and defined over k. This gives rise to the based absolute root system (X*(T) D> ®,X,(T) > ®Y,A),
the real vector space V = X,(T)® R, and the canonical perfect pairing (-,-): X*(T)x X,(T) — Z. The
affine roots Q¢ = {a=a +n|la € ®, neZ} are affine-linear functionals on V. We denote by 0 the facet
containing the origin in V and the B-dominant Weyl chamber € = {v € V|[{a,v) >0, Ya € A}. We denote
the set of dominant cocharacters by X, (T)* := X.(T) N C, where C is the closure of € in V. We also fix the
base alcove a C € whose closure contains 0. The positive simple affine roots A,¢ are the minimal affine
roots a = a + n taking positive values on a. We use the convention that A € X,(T) acts on V by translation
by A. The finite Weyl group is the Coxeter group (W, S) generated by the simple reflections {s, € S} on V,
for a € A; the group W, fixes 0. The extended affine Weyl group W = X,(T) < W, acts on V and hence on
the set @,¢ by precomposition. Let (W,g, Sa¢r) denote the Coxeter group generated by S,¢, the simple affine
reflections s, for a € A,g. It has a Bruhat order < and a length function €: Wy — Z5. Let O C W be the
subgroup stabilizing a C V. The group decomposition W = W, > () allows us to extend < and ¢ from W,
to W, by declaring () to be the set of length zero elements in W.

Fix the field F = k((t)) and ring of integers O = k[[t]]. The Iwahori-Weyl group Ng(T)(F)/T(O) may be
naturally identified with W. We choose once and for all lifts of w € W, in NgT(O), and we lift A € X,(T) to
the element t* := A(t) € T(F). Altering these lifts by any elements in T(0) does not affect anything in what
follows. The group Ng(T)(F) acts naturally on the apartment X,(T)®R, and our convention is that t* acts
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by translation by —A. This is the same as the convention for identifying the Iwahori-Weyl group with the
extended Weyl group which is used in [BT72].

We define the loop group LG (resp., positive loop group L*G) to be the group ind-scheme (resp., group
scheme) over k representing the group functor on k-algebras LG(R) = G(R((t))) (resp., L* G(R) = G(k[[]])).
For a facet f contained in the closure of a, we obtain the “standard” parahoric group scheme P (see
[BT84, HR08]). We often write P := L* P; and regard this as a (standard) parahoric group in LG. Note that
L*G = L*Py. The (standard) Iwahori subgroup will be denoted by B := L*P,. Let Wf =: Wp C W, be the
subgroup which fixes f pointwise; it is a Coxeter group generated by the simple affine reflections which
fix f. The Bruhat order < on W descends to a Bruhat order < on coset spaces such as Wp\W/Wp and
W/Wp. Let fWT denote the elements w € W which are the unique <-maximal elements in their double
cosets WpwWp.

The partial affine flag variety is by definition the étale sheafification of the presheaf on the category
affy of affine schemes Spec(R) over k given by R — LG(R)/L* P¢(R). 1t is represented by an ind-projective
ind-scheme denoted simply by Flp = LG/L* P, and it carries a left action by P = L*P;. Denote by ep its
natural base point. It is well known (see e.g. [HR08]) that for any two standard parahoric subgroups Q
and P, we have a natural bijection on the level of k-points and k**P-points

2.) Q(k)\ Flp(k) = Wo\W/Wp = Q(k*P)\ Flp (kP).

The elements of Bruhat-Tits theory used in [HR08, Proposition 8, Remark 9] work for split groups without
any assumption that the residue field k is perfect (¢f also Remark 4.2). Alternatively, for split G, (2.1) can be
proved directly for any residue field k (including k), using BN-pair relations.

For w e W, let Yp(w) (resp., Ygp(w)) denote the P-orbit (resp., B-orbit) of wep in Flp. When P = 3, we
will often omit the subscripts. Define the Schubert variety Xp(w) to be the Zariski closure of Yp(w) C Flp,
endowed with reduced structure. Similarly, define X(w) = Xg(w) and Xgp(w).

In the part of this paper where we work over a field k, the schemes which arise are finite-type separated
schemes over k (not necessarily irreducible). We will always give them a reduced structure, and we will call
them “varieties.” The morphisms of varieties we consider will always be defined over k, and the varieties
and the morphisms between them will usually be described on the level of points in an unspecified algebraic
closure of k.

In this article, we use the following notation: An equality | |; Z; = Z denotes a finite (or possibly countable)
paving of a scheme or ind-scheme Z into disjoint locally closed subschemes Z;. Note that the underlying
sets are disjoint but there could be closure relations between them—they are not necessarily coproducts in
the category of topological spaces.

3. Review of convolution morphisms

For w € W, define PwP =| |,
w, = (wq,...,w,) € W', we define Xp(w,) to be the quotient of P" = (L*P;)" acting on

PvP, where v ranges over elements v € Wp\W/Wp. For any r-tuple

PwPxPwyPx -+ xPw,P
by the right action
(3.1) (81,82-++8) - (P P2 --»Pr) = (8191, PT &2P2r- - Py 1 8P )-

We define Yp(w,) similarly, with each Pw;P replaced by Pw;P. The quotients should be understood as
étale sheafifications of presheaf quotients on the category affy. It is well known that Xp(w,) (resp., Yp(w,))
is represented by an irreducible projective (resp., quasi-projective) k-variety.
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We regard the above objects as “twisted products”™ Xp(w,) = Xp(wi)xXp(wy)X---XXp(w,) (resp.,
Yp(w,) = Yp(wy)XYp(wy)X---XYp(w,)), consisting of tuples (g;P,g>P,...,g,P) such that g;_llgi € Pw;P
(resp., Pw;P) for all 1 <i <r (here gy = 1 by convention).

Recall that the Demazure product W™ — W, (wy,w,...,w,) = wy*w,*---*w, is an associative operation.
It induces an associative r-fold product (fWF)" — fWt; see e.g. [ACHLIS, Section 4]. Given any w € W, let
fwf denote the unique <-maximal element in WpwWp. Given w, = (w1, wy,...,w,) € W', define

w, 1= fw{*fwg*m*fwf.

Then the multiplication map (LG)" — LG descends to the quotient and defines the convolution morphisms
My, = my, p: Xp(w,) — Xp(w.),
Pw, = Pw,p: Yp(we) — Xp(w.);

see [dCHLIS, Section 4]. We might describe those of the second kind as uncompactified convolution morphisms.

4. Consequences of a factorization of the pro-unipotent Iwahori subgroup

Recall that f is a facet in the closure of a and the facets f and a give rise to the Iwahori and parahoric
subgroups B =L*P, and P = L*P;. The group U is the pro-unipotent radical of the Iwahori subgroup B;
it is the preimage of the unipotent radical U C B under the natural homomorphism B — B induced by
t > 0; see [ACHLIS, Section 3.7]. Also recall that U/p = L™ P is the ind-affine group ind-scheme defined in
[dCHLI8, Definition 3.6.1], called the negative parahoric loop group. The definition is given over Z in (11.1).

f
For an affine root 4, the notation 2 > 0 means that a takes positive values on the facet f. When f = a, we
f f
usually simply write a > 0. The notation a > 0, a <0, etc., has the obvious meaning.

Proposition 4.1. Let P D B be any fixed parahoric subgroup as above, and let v € W be an arbitrary element. Let
f be the facet in the closure of the base alcove a which corresponds to P.

(a) We have a (non-commuting) factorization of group functors
U=Un‘Up)- UN"P).
(b) There is an isomorphism of schemes U N "Up =[], U,, where U, ranges over the affine root groups
corresponding to affine roots with a >0 and v='a i 0, and the product is taken in any order.
Proof. This is [dCHLI8, Proposition 3.7.4]. The proof over Z given in Proposition 11.6 works here as well. [

Remark 4.2. Usually the hypothesis that k is perfect is implicit in Bruhat-Tits theory and the theory of
parahoric subgroups: All residue fields of the complete discretely valued fields F one works over should
be assumed to be perfect so that Steinberg’s theorem applies to show that every reductive group over the
completion F of a maximal unramified extension of F is quasi-split. (This assumption on residue fields is
missing from [HR08] and should be added. I am grateful to Gopal Prasad for pointing out this oversight.)
Since we are assuming our group G is already split over k, it is automatically quasi-split over k(( 1)) = kS¢P((t)).
Therefore, we do not need to assume k is perfect when invoking Bruhat-Tits theory for G. Note that the
hypothesis that k is perfect appears to be used in the proof of [dCHLI8, Proposition 3.7.4] since that proof
relies on [dCHL18, Remark 3.1.1]. However, the latter actually holds for all k: We see the key point that B
is k-triangularizable in the sense of [Spr98, Section 14.1] by invoking [Spr98, Propositions 16.1.1 and 14.1.2]
applied to B.

Lemma 4.3. Assume that v is right-f-minimal, i.e., it is the unique minimal element in its coset v Wy, where
Wisy is the Coxeter subgroup of W, which fixes £ pointwise. Then for any positive affine root a > 0, we have

1 f

via<0 = via<o.
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Proof. The implication (=) uses only that f belongs to the closure of a and holds for any v € W.
f
Next we prove (<). Assuming v~'a < 0, we wish to prove v"'a < 0. Suppose on the contrary that
f f
v la>0. Combining it with v~ 1a <0, we deduce v~1a = 0, that s, v_lsav € Wigy. Since v is right-f-minimal
and s,v € vWg), we deduce that s,v >v. On the other hand, since 4 is positive on a and a is negative on

va, we see that va and a are on opposite sides of the affine root hyperplane H,, which means s,v < v, so we
have a contradiction. g

Proposition 4.4. If v e W is right-f-minimal, then we have isomorphisms
Ypp(v) = Uﬂvﬁp =UN'U = Ygr(v).

Proof. Since v normalizes T(0O), we have Yzp(v) = UvP/P, which identifies with & N "Up by Proposi-
tion 4.1(a) and by the fact that Up — Flp is an (open) immersion; see ¢.g. [ICHLI8, Theorem 2.3.1]. This is
identified with &/ N *U by Proposition 4.1(b) and Lemma 4.3. O

Remark 4.5. The proof of Proposition 4.4 given here ultimately relies on the negative parahoric loop
group introduced in [dCHLI18]. Another proof which is more general and which avoids this reliance is
given in [HR23, Lemma 3.3]. We give the proof above because it is an almost immediate consequence of
Proposition 4.1, which we need anyway to establish Proposition 5.3 below.

5. Stratified triviality of convolution morphisms

Definition 5.1. Let f: X — Y be a morphism of schemes over a base scheme S. For a locally closed
S-subscheme Z C Y and an S-point z: S — Z, write f~!(z) = f~1(Z) Xf,z,.S. We say that f is trivial over
Z if for some point z € Z(S) (equivalently, for all points z € Z(S)), there is an isomorphism of schemes
¢,: fH(Z) > f~1(z) x5 Z such that the diagram

(5.1) fUZ) — L flgxs Z

X pPr3
Z

commutes and such that, writing ¢, = (¢,, f), the morphism 1, is a retraction (a left-inverse) of the canonical
morphism i,: f~1(z) = f~1(2).

To justify the definition, we need the following lemma.
Lemma 5.2. For every pair z,z’ € Z(S), the data (¢, ;) for z give rise to corresponding data (¢, ) forz'.

This shows that if f is trivial with respect to one choice of z € Z(S), it is trivial with respect to any other choice
z’ e Z(S).

Proof. Suppose ¢, = (1,, f) is given, and suppose z’: S — Z is any S-point of Z. Then ¢! as in (5.1)

induces an S-isomorphism 1, , from the pull-back of pr, along z’ to the pull-back of f along z’, that is,
lpZ’,Z: f_l(z) — f_l(z,)'

Then ¢, := ¢, , 0 P, gives a Z-isomorphism ¢, := (¢, f) attached to z’, and the assumption that ¢, is a

retraction of i, implies that 1, is likewise a retraction of the canonical morphism i,: f~1(z’) — f~1(Z). O

When we are working in the category of k-varieties (as in the next proposition), we use the same
terminology, but it is understood that objects and morphisms are in that category, and it may or may not be
possible to upgrade the statements to the category of k-schemes, that is, without taking reduced structures.

Proposition 5.3. The morphism m,, : Xp(w,) — Xp(w.) is trivial over every B-orbit in its image.



8 T.J. Haines

Proof. Writing m := m,, , we prove the triviality of the map m over B-orbits contained in its image. Assume
Yip(v) C Xp(w,). By Proposition 4.4, an element P’ € Ygp(v) can be written in the form

P’ =uvP
for a unique element u € U N "Up.
We can then define an isomorphism
(52) m (Yep(v) = m ™ (vP)x Ygp(v)

by sending (P;,...,P,_1,uvP) to (u~'Py,--- ,u='P,_1,vP) x uvP. Obviously, the first factor belongs to
m~L(vP).

This is a situation where the statement and proof work in the category of k-schemes, not just the category
of k-varieties - this uses the schematic decomposition proved in Proposition 4.1(a). But here we are giving all
fibers their reduced structure; this makes sense because the scheme-theoretic fiber product over k on the
right-hand side of (5.2) is automatically reduced, even when k is not perfect, because Ygp(v) is schematically
an affine space, thanks to Proposition 4.1(b). U

6. Paving results for the case P = B

6.1. BN-pair relations and lemmas on retractions

The following statements can be interpreted at the level of k- or k-points, but we will suppress this from
the notation. Recall that given B; = g1B, B, = o3, and w € W, we say the pair (B, B,) is in relative
position w (and we write B - B,) if and only if g; ' g, € Bwl3. We write

B =¥ B, ifand only if By B, for some v < w.
We have
Ys(w)={B'| BB} and Xgw)={B'|B=*B.
The BN-pair relations hold for v € W and s € S,4:

BvsB if v <ws,

(6.) BvBsB =
BvsBUBvB if vs<w.

Note that for every v € W and s € S, there is an isomorphism {B’ | vB =2 B’} = P! and (B’ | vB =2 B’} C
Yip(v)U Yg(vs).

Lemma 6.1. Suppose s € S, andv e W.
() If v <wvs, then (B’ | vB =B’} N Yg(v) = {vB) = AL.
(i) If v <wvs, then {B" | vB = B’} N Yg(vs) = AL
(iii) If vs <v, then {B" | vB =B’} N Yg(v) = Al
(iv) If vs <v, Then (B’ | vB = B’} N Yg(vs) = {vsB} = AL.

Proof. This is obvious from properties of the retraction map from the building associated to G onto the

apartment corresponding to T, with respect to an alcove in that apartment. A reference for how such
retractions “work” is [HKMI2, Section 6]. O

In a similar way, we get an analogous lemma.

Lemma 6.2. Supposes € S, andv e W.
() If v <wvs, then {B" | vB = B’} N Yg(v) = 0.
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(ii) If v <wvs, then {B’ | vB - B’} N Yg(vs) = AL.
(iii) If vs <v, then (B’ | vB = B’} nYg(v) = A! - A,
(iv) If vs <v, then {B" | vB =~ B’} N Yg(vs) = {vsB} = A°.

6.2. Proof of Theorem 1.3

Since B is understood, we will write Y (w,) for Yg(w,) and X(w,) for Xz(w,) in what follows. Let s, =
(51,...,5,) € S". There is no requirement here that s; ---s, be reduced. Recall the subvariety X(s,) C (G/B)"
which consists of the r-tuples (By,...,B,) such that B;_; gBi for all i =1,...,r (with the convention that
By = B).

We are going to prove the paving by affine spaces of the fibers of the morphism

m: X(sq) — X(s.) CG/B, (By,...,B,)+— B,.
We proceed by induction on r. The case r =1 is trivial, so we assume r > 1 and that the theorem holds for
r—1. Lets, :=sy*---%5,_1. Let s, =(sy,...,5,_1). By our induction hypothesis, the theorem holds for
m': X(s)) — X(s)), (By,...,B,_1)— B,_;.
Now suppose v < s,, so that v3 € Im(m). For an element (By,...,B,_;,vB) € m™(vB), we have
BYvB =B, .
It follows from the BN-pair relations that B, 1 € Y(v) U Y(vs,). We consider the map
&:m Y (wB)— Y(v)UY(vs,)
(By,...,B,_1,vB)+— B,_;.
We will examine the subsets Im(&) N Y (v) and Im(&) N Y (vs,). We will show that
(i) these subsets are affine spaces (either empty, a point, or A'); one of them, denoted by A, is closed
in Im(&), and the other, denoted by A,, is nonempty, open, and dense in Im(&);
(i) if A; # 0, then A; belongs to Im(m’); furthermore, £~ (A;) = m’~!(A;) under the obvious identifi-
cation, and &: £71(A;) — A; corresponds to the morphism m’: m'~1(A;) — A;.
These facts are enough to prove Theorem 1.3. Indeed, applying &~ to the decomposition
Im(&)=A{UA,
and using (ii) gives us a decomposition

mt(wB) =& A)VET (A =m T (A)Um T (A,),

where the first set is closed and the second is nonempty and open. By the induction hypothesis, the fibers
of m’ are paved by affine spaces. Since A; is contained in a B-orbit, we see m’ is trivial over each A; by
Proposition 5.3, and hence each m’~!(A;) is paved by affine spaces. Thus m~!(v1) is paved by affine spaces.

To verify properties (i) and (ii), we need to consider various cases. We start with two cases which arise
from the following standard lemma about the Bruhat order.

Lemma 6.3. Let (W,S) be a Coxeter group and x,y € W and s € S. Then x <y implies x < ys or xs < ys (or
both).

Proof. This argument can be found in the literature (see e.g. [Hum90, Proposition 5.9]), but we give a short
proof for the convenience of the reader. Suppose x <y. We may assume that ys <y. Then we may write
X = Ys’s, where ys (resp., 5) is a subword of any reduced word giving ys (resp., of s). If x = ys, then x < ys. If
x = yss, then xs = ys < ys. O

Recall v <'s, by assumption. The two cases we need to consider are as follows:

Case I: s, <s.s,, so that s, =s.s,. Thus by Lemma 6.3, v <s; or vs, <s,.
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Case II: ss, <s., so that s, =s.. Thus v <s,.
We will break each of these into subcases, depending on whether v < vs, or vs, <v. We then consider
further subcases depending on which of v or vs, precedes s, in the Bruhat order.

Case Ll: v <wvs,. So v <5, is automatic. There are two subcases:
Lla: v <wvs, <sl.
Llb: v <s] but vs, £ s,.

Case 1.2: vs, <v. So vs, < s, is automatic. There are two subcases:
L.2a: vs, <v <sl.
I.2b: vs, <s. butv £ s..

Case ILL: v <wvs,. As v < s, is automatic, there are two subcases:
ILla: v <vs, <s..
ILIb: v <s, but vs, £ s,.

Case I1.2: vs, <v. Here vs, <s, and v < s, so there are no further subcases.

Consider any element (B, ..., B,_1,vB) in m~!(vB). As already noted above, we have B -2~ vB = B,_1.

Then Lemma 6.1 tells us the shape of Im(&) N Y (v) and Im(&) N Y (vs,) in all the cases enumerated above.
We record the results in the following table:

’ Case ‘ Im(&)NY(v) ‘ Im(&)NY(vs,) ‘

l.1a A Al
I.1b A 0

I.2a Al AL
1.2b 0 A°
Il.1a A° Al
[.1b A° 0

1.2 Al A°

In each case it is clear which piece should be labeled A; or A;. This proves the main part of (i) and (ii);
the other assertions are clear. This completes the proof of Theorem 1.3. U

Remark 6.4. Each A! appearing in the table may be identified with a suitable affine root group U,.,,, the
k-group with k-points

Uasnlk) = {uq(xt")|x € k},
where u,: G, — G is the root homomorphism corresponding to the root a. For example, consider Case Lla.
Then Im(&) N Y (vs,) is {B,_; |[vB-=B,_;}. Each such B,_; can be expressed as B,_; = vus,B for a unique
u €U N SUg. Now use Proposition 4.1(b).

6.3. Proof Theorem 1.1 in a special case

We will now prove Theorem 1.1 in the case where P = B and w; = s; is a simple reflection for all 1 <i <r.
The argument is by induction on r, as in the previous subsection. We consider the analogues p and p’ of the
morphisms m and m’

p: Y(se) = X(s.), (By,..., Byo1,By) — By,
p': Y(sy) — X(s1),  (Bi,..., B3, B,q) ¥ By
and for vB in the image of p, we consider the map
& pl(wB)— Y(v)U Y(vs,)
(B, Bi_1,vB) — B,_;.
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The locally triviality of p over B-orbits in its image still holds, and similarly for p’ (see the proof of
Proposition 5.3), and it suffices to establish the analogues of (i) and (ii) above. We consider the same cases as
above, and we list the possibilities for Im(£°) N Y(v) and Im(&£°) N Y (vs,) in the table below, determined in
each case with the help of Lemma 6.2.

’ Case ‘ Im(&°)NY(v) ‘ Im(&°)NY(vs,)

I.1a 1] Al or 0
I.1b 0 1]

l2a | A'=AY or 0 A% or 0
[.2b ] A% or 0
Il.1a 1] Al or0
[1.1b 1] 1]

2 | A'-=A° or 0 A% or 0

Let us explain the meaning of entries such as “A! — A? or 0,” for example in the entry in Case 1.2a for
Im(£°) N Y(v). Note that v < s, implies that Y(v) C Im(m’), but Y(v) C Im(p’) is not automatic. However,
since p’ is B-equivariant, we have either Y(v)NIm(p’) =0 or Y(v) C Im(p’). If Y(v) NIm(p’) = 0, the table
entry is 0. If Y(v) C Im(p’), the intersection Im(&°) N Y (v) is precisely the part of Y(v) which is exactly of
relative position s, from v/3, and this identifies with A! — A° in the case where vs, < v.

The analogues of (i), (ii) above hold, except that here, both A, and A, can be empty, and when nonempty
the larger subset can be either A°, Al — A?, or A'. The morphism p’ is trivial over every B-orbit in its
image (¢f Proposition 5.3), and by induction the nonempty fibers of p’ are paved by finite products of copies
of Al and Al — A (use Lemma 5.2). (Here, as in the end of the proof of Proposition 5.3, we are implicitly
using that the scheme-theoretic fiber product over k of a reduced k-scheme with X is still reduced, even
if k is not perfect, if X is a k-scheme such as A, AV - AL or AO.) Therefore, the fibers of p also have
the desired property. This proves Theorem 1.1 in the special case where P = B and each w; is a simple
reflection s;. O

Remark 6.5. As in Remark 6.4, each A! in the table may be identified with an affine root group U,.,,, and
each A! — A% may be identified with a suitable variety of nonidentity elements U?, . For example, consider
Case I.2a. Then Im(E°) N Y (v) is {B,_ |[vB-=B,_;} N Y (v). We may write such 3,_; as

B,_1 =vus,B
for a unique u € U N U such that u # e. Now use Proposition 4.1(b).

Remark 6.6. In Cases 1.2a and 112, the A piece is in the closure of the A! — A piece, and it is tempting to
consider the union of these as A!. Indeed, if one ignores the possibility of @ in Cases I.2a and I1.2, the table
seems to show that in every case Im(£°) is an affine space (0, A, or A'), and one could ask whether the
argument does not in fact prove (by induction again) that every fiber of p is paved by affine spaces. However,
one cannot ignore the empty set, and in fact in Case IL.2 it is possible to have Im(&°)NY (v) = A! — A while
Im(E°)N Y (vs,) = 0. Letting s € S,¢, this happens for s, = (s1,52) = (s,5) and v = s, = s. This situation is
reflected by the quadratic relation in the Iwahori-Hecke algebra T, * T; = (9 — 1)T; + qT;. In addition, even
in a special situation where Im(£°) is always an affine space, the affine space paving would remain elusive,
as it is not clear that p” would be trivial over all of Im(&°) whenever it is not contained in a single 5-orbit.

Remark 6.7. Remark 6.6 “explains” why we cannot hope to improve Theorem 1.1 to assert that all fibers of
Yp(w,) = Xp(w,) are paved by affine spaces. For a concrete example related to the affine Grassmannian
Grg = LG/L* Py over a finite field k = IF,, take G = SO(5), and let

p=p=p3=ay +ay =(1,1),
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where the @, are the two simple coroots of G. Here we use notation following the conventions of [Bou68].
In [KLM, Section 8.5], it is shown that the Hecke algebra structure constant cg.(q) (the coefficient of the unit

element in the product 1gumg * 1gmg * 1wk for K = LT Py(IF,)) satisfies Cg.(q) = g° —q. This shows that
the fiber over the base point ey of Y7+p (#e) — X1+p,(|tte|) cannot be paved by affine spaces over ;.

7. Proof of Theorem 1.1

7.1. Schubert cells in Flgz as convolution spaces

If ts;---s, = w is a reduced expression, we sometimes write Y (7s;---s,) for Y(w). This Schubert cell has
the following well-known moduli description of its k-points.
Lemma 7.1. Fix the reduced expression w = tsy ---s, as above.

(a) Giving a k-point of Y (w) is equivalent to giving a k-point of T™1Y (w), which is equivalent to giving a
sequence of Twahori subgroups (By, By,..., ;) such that

BZZ 605718157232573 oo B Br'

(b) For any element y € LG(k), giving a k-point of y~' Y (w) is equivalent to giving a sequence of Iwahori
subgroups (Bo, By,---,B,) such that

V' B=By LB 2By S ... B

Proof. In both cases, note that T normalizes the Iwahori 5. ]

7.2. Proof of Theorem 1.1 for P =B
Consider the morphism p,, : Yg(w,) — Xg(w,). For each 1 <i <r, we choose a reduced expression
Wi = TiSi1"""Sin

for s;; € S, and 7; € Q. Since conjugation by 7; normalizes 3, permutes S,¢, and preserves the Demazure
product, we may reduce the study of fibers to the case where each 7; is 1. Then we have

w*:Sll*"'*Sln] *521*'“*52712* ...... *Srl*...*srnr =: Sy

By Lemma 7.1, the morphism p,, 5 is identified with the morphism p; _5: Y(see) — X(s..). By Section 6.3,
its fibers possess the required pavings. O

7.3. Proof of Theorem 1.1 in general

Let C be the class of k-varieties which are finite products of copies of A! and A! — A”.

We consider the morphism p = p,, p: Yp(w,) — Xp(w,) and suppose vP lies in the image. We prove
that the reduced fiber p~!(vP) has a C-paving by induction on r. As before, consider the morphism
p’: Yp(wy,...,w,_1) = Flp given by (P, P,,...,P,_1) — P,_1, and, by a slight abuse, its restriction £° =
Plp1wp): p~'(vP) — Flp, defined by (P,...,P,_1,vP) > P,_;. We have

Im(&£°) = Im(p') NvYp (w; ).
We claim that for any y € W with corresponding B-orbit Yzp (), the reduced intersection

Im(E°) N Ypp(y)

either is empty or has a C-paving. Then since such locally closed subsets cover Im(&°) and since p’ is trivial
over each such subset, the C-paving of the reduced fiber p~!(vP) will follow by our induction hypothesis
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applied to p’ (using Lemma 5.2 and Proposition 5.3). Note that if Im(p’) N Yzp(y) is nonempty, then
Yip(y) C Im(p’), and we are trying to produce a C-paving of the reduced intersection

Yap(y) NvYp(w, ).

We can pass to B-orbits by writing Wpw; ! Wp = L1y, 1mWp for 1, € W a finite collection of right-f-
minimal elements. We then have a locally closed decomposition Yp(w,!) = |—|'Im Yip(#m). Thus we need to
show that each reduced intersection

(7.1) Yap(¥) NvYpp(1m)

has a C-paving. We may assume p is also right-f-minimal. It is tempting here to assert that by Lemma 4.4,
this is isomorphic to

(7.2) YR() NvYp(1m).

However, examples show that (7.2) can be empty even when (7.1) is nonempty. The correct statement is the
following.

Lemma 7.2. Let 1c: Flg — Flp denote the natural projection morphism. Suppose v,z € W are right-f-minimal,
andv € W is any element. Then 10 induces an isomorphism of k-schemes when they are given reduced subscheme
structures

Oy, 2W; ¢ YB(?)“[ I_I VYB(ZW)] — Ypp(y)NvYpp(2).
weWs

Proof. By restricting 7t to the full 7t-preimage of the right-hand side, we obtain a proper surjective morphism

Ty Wy, 2 W : [ |_| YB(VW')]Q[ I_I VYB(ZW)] — Ypp(y)NvYsp(2).

w’ve we Wf

Since Y5(y) is closed in ||, e, Y5(yw’), the domain of 71, .y, is closed in the domain of 7t,y, ., and
hence 7y ., is proper. On the other hand, 7, ., is 2 monomorphism and is surjective; both of these
statements follow from Lemma 4.4. (Take a point x € Ygp(y) N vYpp(z); by Lemma 4.4, we may write
11(X) = x for a unique element X € Y3(y). Then note that automatically this ¥ also lies in the preimage
w1 (vYgp(z)).) Since Tty,.W; is a proper surjective monomorphism, it is an isomorphism on reduced subscheme
structures. g

We now apply this to (7.1) with z = #;,,,. It remains to prove that reduced intersections of the form

Y5(y) NvYg(1,,w)

admit C-pavings, for any element w € Wx.
This reduced intersection is turn is equal to the reduced fiber over vB of the morphism

Ya()XYg ((1w) ™) — X (v (w)™"),

by the appropriate special case of Lemma 7.3 below. But each fiber of this morphism has a C-paving by
Section 7.2. (]

Lemma 7.3. For any wy,w, € Wp\W/Wp and v € W, we have an isomorphism of k-schemes (not necessarily
given reduced structure)

(7.3) Yp(w) NvYp(wy') = p,! (wP).
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Proof. Each side is a scheme which is determined by the operation of étale sheafification of a certain
presheaf on the category Aff;. As sheafification commutes with finite limits, it is enough to prove that
the corresponding presheaves are isomorphic. Suppose R is any k-algebra. A section of the presheaf
fiber p;i(vP)(R) is a tuple of the form (Pg, gPr, vPr), where Pr = L*G¢(R) and where ¢ € Prw;Pg and
¢ 'v € Prw,Pr. The means precisely that gPg € Yp(w;)(R) N va(wgl)(R). Thus the two presheaves
coincide. O

8. Proof of Corollary 1.2

This follows immediately from Theorem 11, as we have a decomposition into locally closed subvarieties

(8.1 Xp(wa) =|_|Yp(v.),

where v, ranges over all tuples (vy,v,,...,v,) € Wp\W/Wp such that v; < w; in the Bruhat order on
Wp\W/Wp for all i. Thus the fiber has a corresponding decomposition, and the result follows from
Theorem 1.1 O

9. Application to structure constants for parahoric Hecke algebras

Fix a nonarchimedean field F with ring of integers O and residue field kr = IF;. Let us suppose G is
a split group over Z, and fix a Borel pair BD T in G, also split and defined over Z. This gives rise to
the extended affine Weyl group W defined using G O BD T (it agrees with the extended affine Weyl group
attached to Gg D Bp D T). For any parahoric subgroup P C G(F), consider the parahoric Hecke algebra
H(G(F)//P) = C.(P\G(F)/P,C), give the structure of a unital associative C-algebra with convolution *
defined using the Haar measure on G(F) giving PP volume 1. Consider the C-basis of characteristic functions
fw = 1pyp indexed by elements w € Wp\W/Wp. We can represent such cosets by maximal length elements
w e fwt,

Proposition 9.1. For any wi,w; € fWt, we have

fur*for =) Gy (@)

vefwt

where the structure constant is a nonnegative integer of the form

@)= ) mapgq—1)"

a,beZs,

Jor certain nonnegative integers m,, which vanish for all but finitely many pairs (a,b).

Proof. The combinatorics of parahoric Hecke algebras over characteristic zero local fields F are the same
as those for F = IF;((f)) (the parahoric subgroups in each setting chosen to correspond to each other in the
obvious way, suitably identifying apartments for Gp D Tr and G]Fq((t)) D TIFq((t)) and facets therein—for a
much more general statement, see [PZ13, Section 4.1.2]). Therefore, we can assume F is of the latter form.
Then note that ¢, ,,(q) is the number of [F,-rational points in the fiber over v of the corresponding
convolution morphism Yp(w;)XYp(w;) — Xp(w,). Thus the result follows from Theorem L1. O

This gives rise to general parahoric variants (in the equal parameter case) of combinatorial results on
structure constants for spherical affine Hecke algebras due to Parkinson [Par06, Theorem 7.2] and Schwer
[Schw06]. By virtue of the Macdonald formula (see e.g. [HKP10, Theorem 5.6.1]), the function P) considered
(albeit with differing normalizations) by Parkinson and Schwer agrees up to an explicit normalizing factor with
the Satake transform f/\v of the basis elements f) = 1G(1Fq[[t]])t*G(IFq[[t]]) above, for any dominant A € X,(T).
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In particular, Proposition 9.1 shows that suitably renormalized versions of the functions CK” appearing in
[Schw06, Theorem 1.3] lie in Z>¢[q —1].

10. Cellular paving of certain subvarieties in the affine Grassmannian

In this section, we will restrict our attention to certain generalizations of the intersections containing
the Mirkovic-Vilonen cycles in the affine Grassmannian. Let P = Py = L*G, and consider the affine
Grassmannian Grg = Flp. We fix any standard parabolic subgroup P D B with Levi factorization P = MN
for a Levi subgroup M D T and unipotent radical N C U. Here B = TU is the Levi decomposition of the
fixed Borel subgroup B.

We abbreviate K = L™ G and note that the intersection Kj; := KN LM in LG can be identified with L* M.
We define Kp := Ky - LN. This is a semidirect group ind-scheme over k since Kj; normalizes LN. For
A € X,(T), denote the corresponding point by x, := A(t)e;+g € Grg(k).

Fix p € X,(T)*. Recall [HKMI2, Definition 3.1}, in which we declare v € X,(T) satisfies v > p provided
that

e (a,v) =0 for all T-roots a appearing in Lie(M);

e (a,v+A)>0 for all T-roots & appearing in Lie(N) and for all A € Q(p).
Here Q(p) = {1 € Xu(T)|p —wA is a sum of positive coroots, for all w € Wy}. Also, let X.(T)™ be the
cocharacters which are dominant for the roots appearing in Lie(B N M).

Proposition 10.1. If v > u for y € X,(T)", and if A € Q(u) N X.(T)™, then there is an equality of k-
subvarieties in Grg

(10.1) (t7VKt")xy N Kx, = Kpxy N Kx,,.

Proof. The equality (t7VKt")x, N Kx, = Kpx) N Kx,, follows on combining [HKMI12, Proposition 7.1] and
[HKM12, Lemma 7.3]. The desired equality without the closures follows formally from this one. g

The left-hand side of (10.1) admits a cellular paving by Theorem 1.1. Indeed, we have an equality of
reduced subschemes
(FVKE) 2y 0 Kxy =pul g (terq),

for w, = (t,,t_,_)); see Lemma 7.3. Hence we deduce the following result.

Corollary 10.2. For p, A as above, the variety L"M LN x) N L*Gx,, in Grg admits a cellular paving. In
particular, for P = B, the Mirkovic-Vilonen variety LUx) N L*Gx,, admits a cellular paving.

Note that this applies to all pairs (4, 1) € X.(T)* x X, (T)*M: If the intersection is nonempty, then A € Q(u)
is automatic, by [HKMI12, Lemma 7.2(b)).

11. Paving results over Z

The goal of what follows is to extend the constructions and results above to work over Z. Because there is
no building attached to a group over Z[[¢]], the main challenge is to give purely group-theoretic arguments
for certain results which are usually proved with the aid of buildings.

11.1. Basic constructions over Z

We shall recall the basic notions attached to groups over Z. One useful reference is [RS20, Section 4], but
in places we have chosen a slightly different way to justify the foundational results (for example, we do not
assume the existence of the Demazure resolutions over Z—a result stated without proof in [Fal03]—and
instead we construct them as a special case of the convolution morphisms over Z).
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We assume G is a reductive group over Z, more precisely, a smooth affine group scheme over Z whose
geometric fibers are connected reductive groups, and which admits a maximal torus T over Z, which is
automatically split (see [Conl4, Section 6.4, Example 5.1.4]). We fix a Borel pair over Z, given by GDBD T
(Borel subgroups B O T exist, by eg. [Conl4, Proof of Theorem 5.1.13]). Following [RS20, Section 4],
we have the usual objects: the standard apartment endowed with its Coxeter complex structure given
by the affine roots, the base alcove a and other facets f therein, the Weyl group W, the Iwahori-Weyl
group W, the affine Weyl group W,¢, and the stabilizer subgroups Wy C W,¢. The Iwahori-Weyl group
W := Ng(T)(Z((t)))/T(Z][[t]]) can be identified with the extended affine Weyl group X, (T)=W,, where using
[Conl4, Proposition 5.1.6] we may identify Wy = Ng(T)(Z[[t]])/T(Z[[t]]). As X.(T)> W, remains unchanged
upon base changing along Z — k for any field k, it inherits a Bruhat order < as in the classical theory over
a field. Similarly, the apartment is canonically identified with the apartments attached to (Ggys), Tg(t)) or
(GIFP((t)r TIF,,((t)) for any prime number p.

We define in the obvious way the positive loop group L*Gy (a pro-smooth affine group scheme over
Z) and the loop group LGy (an ind-affine group ind-scheme over Z). For representability, see ¢.g. [HR20,
Lemma 3.2].

The following result is essentially due to Pappas and Zhu, and this precise form was checked jointly with
Timo Richarz. This is a very special case of the general construction due to Lourenco, in [Lou23, Section 3].

Lemma 11.1. Let f be any facet of the apartment corresponding to T in the Bruhat-Tits building of G(Q(t)), and
let Gy, be the associated parahoric Q[[t]|-group scheme with connected fibers and with generic fiber G @7 Q(t).
Then there exists a unique smooth affine fiberwise connected Z|[t]|-group scheme Gs of finite type extending Gg,,
with the following properties:

i) There is an identification of Z(t)-groups Gs ®z[) Z(t) = G ®z Z(t).

it) For every prime number p, the group scheme Gg ®z [ Fy[[t]] is the Bruhat-Tits group scheme with connected
fibers for G ®z IF,((t)) associated with f.

Proof- This is proven in [PZ13, Section 4.2.2]. Note that the base ring in /loc. cit. is the polynomial ring
O|t], where O is discretely valued. The same proof remains valid over the base ring Z[[¢]] using [BT84,
Section 3.9.4]. g

For each f, we define the “parahoric” subgroup L*Gy C LGy, and we often abbreviate by writing
Py := L*G¢. This has the property that for each homomorphism Z — k for k a field, we have Pz @z k = P,
where the latter is the object defined earlier when working over the field k. We define the (partial) affine flag
variety

Flp.z = (LGz/Pz)",
the étale sheafification of the quotient presheaf on Aff. This is represented by an ind-projective ind-scheme
over Z; see [HR20, Corollary 3.11], where the proof is given for objects defined over O[] for any noetherian
ring O - a similar proof works in our setting over Z[[t]).

We denote the base point in Flp 7 by ep 7.

We have a notion of a negative parahoric loop group and a corresponding open cell in Flp . We
define L™~ Gy :=ker(L"Gyz — Gz), t ! +- 0, where L~ Gz (R) = G(R[t"!]). Following [dCHLI8], we define
L="Gaz =L Gz = Ug. Then for any facet f in the closure of a, we define the negative parahoric loop
group
(1L1) L Gz:= ) "L Gaz),

weWs
the intersection being taken in LGy.

Lemma 11.2. The multiplication map L™~ Gg 7 x L*Ggz — LGy is representable by a quasi-compact open
immersion.
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Proof. This is proved in the same way as [HLR18, Lemma 3.6], which proves the analogous result when the
base ring is a ring of Witt vectors W instead of Z; the same argument works for our group schemes G¢
over Dy := Z[[t]l. We omit the details. A proof in a more general context is due to Lourenco; see [Lou23,
Corollary 4.2.11], which also points out that the multiplication morphism is affine (hence automatically
quasi-compact). g

From now on, we often write G for G¢ and P for L*G;.

We recall the interpretation of partial affine flag varieties in terms of suitable spaces of torsors. For any
ring R, set Dg = Spec(R[[t]]) and D, = Spec(R((t)). Recall that we define the sheaf Grg on Affz to be the
functor sending R to the set Grg(R) of isomorphism classes of pairs (£, ), where € is a right étale torsor for
Gpg =Y Xp, Dg over Dg, and where a € £(Dy), that is, a is an isomorphism of Gp- -torsors 50|D; > 5|D;,
where & is the trivial Gp, -torsor. The left action of ¢ € LG(R) on Grg(R) sends (£, a) to (£, og™!). Then
Grg(R) = Flp z(R), functorially in R (see e.g. [HR20, Lemma 3.4]).

Remark 11.3. For the groups G over Z we consider, one can show using negative parahoric loop groups
that the morphism LGz — Flp 7 has sections locally in the Zariski topology, and hence for any semi-local
ring R, we have Flp 7(R) = LGz(R)/Pz(R). This can be seen by reducing to the case of fields, as in [RS20,
Section 4.3]. One can also deduce it from a recent result of Cesnavicius [Ces22, Theorem 1.7] that the affine
Grassmannian Grg z agrees with the Zariski sheafification of the presheaf quotient LG/L*Gy. To use this
to prove the corresponding result for a general parahoric Py, one first deduces the result for Pz = By, using
the lifting for Pz = L* Gy and the fact that the fiber of Flg; — Grg 7 over the base point is (G/B)z and
G — (G/B)z is Zariski-locally trivial. Then, finally, one uses the topological surjectivity of Flz z — Flp z
to prove that a cover given by translates of the big cell in the source maps to a cover of translates of the
big cell in the target. In fact one can use translates wL™ G,ep 7 for w € W to cover Flg 7, thanks to the
Birkhoff decomposition of LG over fields (see [Fal03, Lemma 4|). I am grateful to Thibaud van den Hove for
a clarifying discussion about this remark, which we shall not need in the rest of this article.

Lemma 11.4. Fix a ring R and (§,a) € Grg(R). Then the presheaf Grg ¢ , sending Spec(R’) — Spec(R) to the
set of isomorphism classes of pairs (E’,a’) consisting of a Gp,, -torsor £’ — D and an isomorphism of G- -torsors
a’: oy, = E[,. is representable by an ind-projective ind-flat ind-scheme over R.

R/

Proof- If we fix a representative (£, a) within its isomorphism class, then the map
(&, ayr— (E,a" o)

is a well-defined isomorphism of presheaves Grg ¢ , = Grg x Spec(R). Now recall that Grg is ind-flat over
Z by adapting the proof of [HLRI8, Proposition 8.9], or by reducing to the case Pz = L*Gz and then
invoking [HLRI18, Prop, 8.8]. g

11.2. Ingredients needed for paving over Z

11.2.1. Iwahori decompositions of Bz and Udz.— Our choice of base Iwahori subgroup By is compatible
with our choice of Borel subgroup B =TU over Z in the following sense: For any algebra R, we have

Bz(R)={g € L"Gz(R)|g € BR)},

where ¢ is the image of ¢ under the canonical projection L*Gz(R) — G(R). We define the pro-unipotent
radical Uy C By by requiring Uz(R) to be the preimage of U(R) under the projection g — . Let T
denote the group scheme 7 = L*T;. Let B = TU be the Borel subgroup such that BN B = T. For any
integer m > 1, let L™ Gy(R) denote the kernel of the natural homomorphism L*Gz(R) — G(R/t"R). Write

V=107,
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Proposition 11.5. The group schemes By and Uy possess Iwahori decompositions with respect to B =T U, that is,
there are unique factorizations of functors

(11.2) Bz =(BzNLUz) Tz (BzNLUy),
(1L3) Uz = (UzNLUZ) T, (BzNLU).

Proof. First we note that the uniqueness in the decomposition follows from the uniqueness of the decomposi-
tion in the big cell in U-T - U in G.

We shall prove only the first decomposition (the second is completely similar). Consider g € Bz(R), with
reduction modulo t given by ¢ = b for some b € B(R) C L*Bz(R). Then g1 := gb™! € LG4 (R), and it
suffices to show this element lies in

(11.4) (B2nLYTZ) 1" (Bzn 1V Uy).

The filtration --- ¢ LG, ¢ LI™Gy C --- € LT Gy has abelian quotients isomorphic to Lie(G)z =

Lie(U)z®Lie(T)z @ Lie(U)z. We claim that we can write

g(l) = lim #,, - t,, - Uy,
m—00

with #,,, t,,, u,, lying in the R-points of the appropriate factors of (11.4), and such that the limit converges
in the t-adic topology. Indeed, decomposing the image modulo ¢ of g(!) in terms of the Lie algebra and

lifting, we can write

(1) = (L2 ,(2) {(12),,(12)

4 4

where 112 € LT, t12) € LUT,, and u1?) € L1 U, and where g(z) € L Gy. Here we have used that
—(1,2)
7

s

normalizes L(?)G. We then repeat this process with ¢{?) and get an expression
gl = (ﬁ(ll)ﬁ(zﬁ)),g@) . (t(1,2)t(2,3)) ) (u(2’3)u(1’2)),

23) refers to a component of g(z) lying in an appropriate L(2)? group,

where g(3) € LG, and where ?(
with g3 viewed as an “error term.” Here we have used again the normality of L")G in L*Gy, the
commutativity of L™ Ty, and the fact that L™ T normalizes each LM Uy,. Continuing this, we define the

sequences gglm=Lm) y(m=1,m) y (m=1,m) 5nq g(m) and then set

ﬁm — 11(1’2) . L—l(m—l,m),
t, = t(1,2) . t(m—l,m)’
Uy, = u(mfl,m) . u(1,2)'

In the f-adic topology, these products converge, and the terms g(m) approach the identity element e € G.
Hence this proves the claim, and thus the proposition. O

11.2.2. Proposition 4.1 over Z.—
Proposition 11.6. The analogue over Z of Proposition 4.1 holds.

Proof. There are only finitely many affine roots a such that U, 7 is contained in Uz N "Up 7, namely the

f
finitely many a with a > 0 and v~'a < 0. By the Iwahori decomposition Proposition 11.5 and the root group
filtrations in Uy and Uy, we easily see that there exist finitely many positive affine roots ay,...,ay such that

(11.5) Uy = Ual,Z .. UaN,Z (Uz N ' Pyg).

In what follows, we suppress the subscript Z. Give a total order < to the set of positive affine roots 4; in this
list, by letting a < b if and only if a(x() < b(xg) for a suitably general point xy € a. Let r{ <1, <--- <1y be

f
the totally order subset of the a; with the property that v~!r; < 0. The root group U,, appears finitely many
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times in (1L.5). Starting from the left, we commute the first U, to the left past any preceding groups Uj,. By
the commutator relations (e.g. [d{CHLI8, Equation (3.6)]), in moving all the U,  groups all the way to the left,
we introduce finitely many additional affine root groups U, with r; < c. Then we consider the part of the

f
product which now involves only root groups of the form U,,..., U,,, and certain U, with v~1¢> 0. Then

we repeat the above process with r, in place of r{. Continuing, we eventually move all the U, factors with

f
v71r < 0 all the way to the left. We have proved that
(1L6) u=\lu,wnp)
r

f
where r ranges over the affine roots with r > 0 and v™'r < 0. We claim that the obvious inclusion
[1, U, cU N Up is an equality and the resulting product is a decomposition. Both statements follow easily
using the theory of the big cell, Lemma 11.2. ]

Corollary 11.7. The analogues over Z of Propositions 4.4 and 5.3 hold.

11.2.3. Schubert cells and Schubert schemes over Z.— Fix w € W, and fix a lift w € NgT(Z[[t]]) of w.
We usually suppress the dot from now on since no construction depends on this choice. The group Py acts
on the left on Flp z; we define the Schubert scheme Xp z(w) C Flp 7 to be the scheme-theoretic image of the
morphism
PZ —> Flplz, pr— pu’/eplz.

Similarly, we can define Xgop 7z(w) for any parahoric subgroup Q; in particular, we have Xgp 7.

We define Yp z(w) C Flp 7 to be the étale sheaf-theoretic image of the morphism of sheaves Pz — Flp 7,
p > pwep, and as before we define similarly Yop  for any parahoric subgroup Q7 C LGz.

Lemma 11.8. Let Py C LG be the parahoric subgroup fixed above (similar statements apply to any Q-orbits in
Flp 7).
(a) The scheme Xp z(w) is an integral scheme which is projective and faithfully flat over Spec(Z), and
Xpz(w)®Q = Xp g(w).
(b) The morphism Yp z(w) — Flp 7 of étale sheaves factors canonically as

Yp,z(w) — Xpz(w) — Flpz,

and the first morphism is represented by a quasi-compact open immersion of schemes.
(c) The scheme Yp z(w) is smooth over Spec(Z), and its formation commutes with base change along an
arbitrary homomorphism Z — R.

Proof. The projectivity in (a) is proved in [RS20, Definition 4.3.4 and what follows]. Part (b) can be proved by
adapting the argument of [Ricl6, Corollary 3.14|. Part (c) holds since Yp z(w) is the orbit under a smooth
group scheme over Z. Hence Yp 7(w)® Q = Yp g(w).

The formation of the scheme-theoretic image of a quasi-compact morphism commutes with flat base
change (see [Sta24, Lemma 29.25.16]). So the generic fiber of Xp z(w) is the schematic-closure of Yp ¢(w)
in Flp @; that is, Xp 7(w) ® Q = Xp o(w). Now the flat closure of the latter in Xp 7 contains the scheme-
theoretic closure of Yp 7(w), which is all of Xp 7(w). This shows that the latter is faithfully flat over Z.
Clearly, Xp 7(w) is irreducible since it is the scheme-theoretic image of a morphism with irreducible source.
Moreover, Xp z(w) is reduced since is it the flat closure of a Q-variety. O

11.2.4. Reduction to neutral element of 3.— In the theory over fields k, it is easy to see that 7 € () has
the property that 7 normalizes the standard Iwahori subgroup By C LGy corresponding to the base alcove a.
We need to know that this remains true over Z.

Lemma 11.9. Ift € Q, then "By = By as subgroups of LGy.
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Proof. The identification follows by the uniqueness characterization of the group scheme G, 7 in Lemma 11.1
and the fact that it holds after base change to every field k. g

11.2.5. Twisted products over Z.— As above we fix Pz = L*G¢ 7. Again abbreviate G := Gg 5. Fix r € N,
and consider the right action of P, on LG/, given by the same formula as (3.1).

Definition 11.10. We define the r-fold twisted product
Grg:= LGy X2 LGy x"7 - xP2 LG /Py =: Grg%---%Grg
to be the étale quotient sheaf for the presheaf (LGy)"/(Pz)" defined above.

It is clear from the fact that every G-bundle over Dy is trivializable over Dy for some étale ring extension
R — R’ that we can identify Grg(R) with the set of equivalence classes of tuples

(Eortte) = (E1,...,E01,..., )

such that each &; is a Gp,-torsor over Dy and the «;: Si_llp;{ = S,-|D;Q are isomorphisms of Gp; -torsors
over Dy for alli =1,...,r (with the convention that & is the trivial torsor).

Lemma 1L11. The sheaf LGy x72 LGy X7z .- xP2 LG/ Py is represented by an ind-proper ind-scheme which is
Jaithfully flat over Z.

Proof. We proceed by induction on 7. The case r =1 is clear: The ind-flatness of Grg — Spec(Z) is proved
by an easy reduction to the case Pz = L* Gy, which is then handled by [HLR18, Proposition 8.8].

Now assume 7 > 1 and that the result holds for r — 1-fold quotients. The projection onto the first factor
gives a morphism

p: LGy X772 LGy x77 .. xP2 LGy /Py — LGy/Py.

Now the induction hypothesis and the proof of Lemma 11.4 show that this morphism is representable by an
ind-proper ind-flat ind-scheme, and hence the total space is represented by an ind-scheme.

Locally in the étale topology on the target, p is locally trivial with flat fiber, hence is flat. It follows that
the source of p is flat over Z.

It remains to prove the source of p is proper over Z. We know that ind-locally in the étale topology
on the target, LG — Grg has sections and hence after passing to an étale cover p becomes Zariski-locally
trivial with fibers which are ind-proper over Z, by using translates of the big cell (see Lemma 11.2). Since
properness descends along étale covers, we conclude that p is ind-proper, as desired. O

Let w € W. Denoting the quotient morphism by q: LGz — Flp 7, note that PzwPz = q_l(Yplz(U/))
(an equality of étale subsheaves of LGy), where by definition PzwP, denotes the étale sheaf quotient
Py x¥Pz Py of Pz x Pz by the right action of Pz NwPzw™! given by (p,p’)-6 = (pd, w6 'wp). In this
vein, we define sz = qil(Xp’Z(W)).

Definition 11.12. Let w, = (w1, wy,...,w,) € W’. We define
Yp,z(w,) := Prwi Py X% Pgwy Py X7 -+ X2 Pyw, Pz/Pg = Yp z(w)XYp z(wp)% -+ XYp(w,),
Xp,z(wa) := Pzwi Pz X2 Pyw, Py x72 - X2 Pyw; Py /Py = Xp 7 (w1)%Xp z(wp)% -+ % Xp(w,)
to be the étale quotient sheaves as in Definition 11.10.

Lemma 11.13. The sheaves Xp z(w,) and Yp z(w,) are represented by integral schemes which are of finite type
and flat over Z. Moreover, Xp z(w,) is proper over Z.

Proof. The proof goes by induction on r, in the same manner as the proof of Lemma 11.11. 0
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11.2.6. Demazure morphisms and closure relations over Z.— We need to construct the Demazure
resolutions over Z. This is stated without proof in [Fal03] and is implicit in some literature (e.g. [PR0O8, RS20]),
but we think some extra discussion is needed.

For s € S, let G 7 := G 7z, where f is the facet fixed by s. Let P, 7z = L*G, 7. We have P, z = BzUByzsBy
as schemes (to show this we use Lemma 11.8(c) and the fact that the inclusion Bz(R)U BzsBz(R) < P; z(R)
is surjective when R is any field, but we warn that this equality fails for general R, in particular for R = Z).
We have an identification IPZ P 7/Bz. Furthermore, the foregomg shows we have an open immersion

= BysBy/By — IP with closed complement A =By/By — IP . The BN-pair relations hold.

Lemma 11.14. For any w € W and s € S,¢, we have equalities of sub-ind-schemes in LGy

BzwsB ] ,
BywBysBy = 7 wsBy ifw<ws
BywByz UBywsBy ifws <w.

Proof- Both cases are proved by induction on {(w). The first case follows from the case of fields and
Lemma 11.8(c). For the second case, it is enough to prove the result for w = s. But BysByzsBy =
BzsBz U By = P; 7 follows because P; z is a group subscheme of LGz and sBys ¢ By. O

Let w = sy ---s, be a reduced word in W. Consider the Demazure morphism given by projecting to the
final coordinate:

B B B
mg, 72 D(se)z := P57z X% Ps, g X°2 - X"2 P 7/Byz — Xpz(w).

The image lies in X3 7(w) by flatness and properness, and by the fact that this holds over Q. By the BN-pair
relations, it gives an isomorphism over Y 7(w). Furthermore, it implies the closure relations

(1.7) Xp,z(w I_I Ypz(v

where v € Wp\W/Wp is such that v < w in the Bruhat order on Wp\W/Wp. In particular, we see that
sz = ||, PzvPgz. Here and in (11.7) the union indicates a union of locally closed subschemes, and every
subscheme appearing is reduced by construction.

With the existence of Demazure resolutions over Z in hand, one can prove the following result by copying
the argument of [HLRI18, Proposition 3.4] (Demazure resolutions over Z are used to prove that Schubert
varieties attached to simply connected groups over a field k are normal, following the argument in [PROS,
Section 9]).

Corollary 11.15. For any field k, (Xp 7z(w) ®7 k)red = Xp k(). Further, Xp z(w)®z k is reduced if and only if
Xp r(w) is normal.

11.2.7. Convolution morphisms over Z.— Given the BN-pair relations involving subschemes of LGy, we
have the following.

Lemma 11.16. For any w, = (w1, wy,...,w,) € W' with Demazure product
w, = fw{ . fwf -
we have the convolution morphisms and uncompactified convolution morphisms over Z.:
My, p, Xp,z(wWe) — Xp z(w.),
Puw,p,: Ypz(We) — Xp z(w.).

Lemma 11.17. The analogues of Lemma 7.3 and Corollary 10.2 hold over Z.

Proof. The proof of Lemma 7.3 carries over. Then using this, and interpreting retractions group-theoretically
(see Remarks 6.4 and 6.5), we see that the proof of Corollary 10.2 also carries over. g
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11.3. Main results over Z
The following theorem gives the Z-versions of Corollaries 1.2 and 10.2.

Theorem 11.18. In the notation above, for any v € W, the reduced fiber m;{lpz(v ep,) has a cellular paving
over Z; that is, it is paved by finite products ofA/AlZ and AIZ - AOZ. Further, for every standard parabolic
subgroup Pz = Mz Ny C Gy and every pair of cocharacters (u, A) € X (T)" x X (T)™, the reduced intersection
L™Mz LNz x)\NL"Gzx, in Grg, has a cellular paving over Z.

Note that the second statement gives an alternate proof of a recent result of Cass-van den Hove-Scholbach,
namely [CvdHS22, Theorem 1.2].

Proof. The proofs of the results over fields can be directly imported to the context over Z, using in particular
Corollary 11.7, Lemma 11.9, Lemma 11.14, Equation (11.7), and Lemma 11.17. With these tools in hand, the
proof over fields works over Z with no changes. Note that we do not really need the language of retractions
at any point in the proof: Every fact justified using retractions is equivalent to a purely group-theoretic
statement. See for example Remarks 6.4 and 6.5. g

12. Errata for [dCHLIS]

We take this opportunity to point out a few minor mistakes in [dCHLI18]. In [dCHLI8, Proposition 3.10.2],
we stated that all Schubert varieties Xp(w) in partial affine flag varieties Flp are normal. This is true for
classical Schubert varieties (those contained in G/P for a parabolic subgroup P in G) but is false in general.
Pappas and Rapoport proved in [PRO8] that normality does hold for all affine Schubert varieties attached to
G over a field k, as long as the characteristic of k is coprime to the order of the Borovoi fundamental group
701 (Gger) (see [Bor98]). However, when char(k) divides |7t1(Gger)|, it is proved in [HLR18, Theorem 2.5] that
most Schubert varieties in Flp are not normal.

The normality of Schubert varieties is invoked in [dCHL18, Corollary 4.1.4] to prove that the convolution
space Xp(w,) is normal. This also fails in general but is true when char(k) { |711(Gger)|- In addition,
normality of Schubert varieties is used in one of the proofs in [dCHLIS8] that the fibers of convolution
morphisms Xp(w,) — Xp(w,) are geometrically connected. More precisely, a normality hypothesis plays a
role in [dCHLI8, Proposition 4.4.4], which in turn is used to prove the geometric connectedness of the fibers
in [dCHLI8, Corollary 4.4.5]. This proof is not valid in general but is valid, again, under the hypothesis
char(k) t 711 (Gger)|- Fortunately, in [dCHLI8, Theorem 2.2.2], another proof of the geometric connectedness
of the fibers is given, which does not rely on any normality of Schubert varieties.

Furthermore, the polynomials F,, ,(q) appearing in [dCHLI8, Equation (2.1)] were defined incorrectly as
the Poincaré polynomials of the fibers p~!(v3). They are rather the functions

Fp,0(q) = tr(Frob, , Z(—l)i H(p™ (vB), ZCxypu,)))

The fact that F, ,(q) € Z5[q] is not a priori obvious, but it follows from [dCHLI8, Equation (2.1)].
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