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 TRANSACTIONS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 278, Number 2, August 1983

 CONFORMALLY FLAT MANIFOLDS

 WITH NILPOTENT HOLONOMY

 AND THE UNIFORMIZATION PROBLEM FOR 3-MANIFOLDS

 BY

 WILLIAM M. GOLDMAN

 ABSTRACT. A conformally flat manifold is a manifold with a conformal class of

 Riemannian metrics containing, for each point x, a metric which is flat in a

 neighborhood of x. In this paper we classify closed conformally flat manifolds whose

 fundamental group (more generally, holonomy group) is nilpotent or polycycic of
 rank 3. Specifically, we show that such conformally flat manifolds are covered by

 either the sphere, a flat torus, or a Hopf manifold-in particular, their fundamental

 groups contain abelian subgroups of finite index. These results are applied to show
 that certain T2-bundles over S' (namely, those whose attaching map has infinite
 order) do not have conformally flat structures. Apparently these are the first

 examples of 3-manifolds known not to admit conformally flat structures.

 Introduction. A Riemannian metric is said to be conformally flat if locally it is

 conformally equivalent to the (flat) Eucidean metric on RI. A flat conformal

 structure on a manifold is a conformal class of conformally flat metrics. It is the

 purpose of this paper to classify closed conformally flat manifolds (i.e. manifolds

 with flat conformal structures) whose fundamental groups are either nilpotent or

 polycyclic of rank s 3. These results are applied to show that certain 3-manifolds do

 not admit flat conformal structures.

 The Eucidean n-sphere S is conformally flat. So is (obviously) the Eucidean

 space R' = S - { x } and its quotient, the flat n-torus Tn. There is another class of

 examples which are covered by the complement of a point in RI, namely the Hopf

 manifolds. Let 0 be the origin in RW. and choose a similarity transformation A of R"

 which fixes 0 (i.e. A is a linear transformation) and detA > 1 (i.e. A is an

 expansion). Then (R" - {O})/{An: n E Z} is a closed conformally flat manifold
 diffeomorphic to SI X sn-1.

 More generally it can be shown (see [19]) that every 3-manifold covered by a

 product F X S1, where F is a manifold of constant curvature (e.g. a closed surface),
 has a flat conformal structure.

 Thanks to the work of Thurston, we know that a great many 3-manifolds have flat

 conformal structures. A metric of constant curvature is conformally flat and,

 therefore, hyperbolic manifolds-quotients of (real) hyperbolic space by discrete

 groups of isometries-are conformally flat. Thurston has shown that an enormous

 class of 3-manifolds have hyperbolic structures and thus flat conformal structures.
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 574 W. M. GOLDMAN

 Kulkarni [13] has shown that there is a natural operation of connected sum of

 conformally flat manifolds. He has also found more complicated operations of union

 along submanifolds other than spheres. By taking such unions of 3-dimensional

 manifolds which are quotients of spheres, tori, Hopf manifolds, products F X S1

 (where F is a surface of genus > 1), and hyperbolic manifolds, we obtain a huge

 class of 3-manifolds which admit flat conformal structures.

 It is, therefore, of interest to determine whether all closed 3-manifolds admit flat

 conformal structures. For example, does every S1-bundle over a surface of genus

 g ? 1 which is not covered by a product admit a flat conformal structure? The
 modest aim of this paper is to answer this question negatively for g = 1. That is, if

 M3 is a 3-manifold which fibers over a 2-torus T2 with nonzero Euler class (i.e. M is

 not covered by a product), then M admits no conformally flat structure. Such

 manifolds M3 can be represented as quotients of the 3-dimensional real Heisenberg

 group (cf. Thurston [17, 4.7]).

 Since T fibers over S1, every circle bundle over T can be represented in another
 way, as a T2-bundle over S'. If M3 is a 3-manifold which fibers over S1 with fiber

 T2 and whose monodromy preserves the isotropy class of a nonseparating loop on

 T2, then M3 is a circle bundle over T2. However, most diffeomorphisms of T2 do

 not preserve an isotopy class of nonseparating loops, and most T2-bundles over S5

 do not fiber over T2. A typical example is obtained by choosing as monodromy a

 linear diffeomorphism of T2 represented by a matrix A E GL(2; Z) having real

 distinct eigenvalues, e.g., A = [211. Such manifolds can also be represented as
 homogeneous spaces of the 3-dimensional unimodular exponential nonnilpotent

 solvable Lie group E(1, 1)0 of isometries of Lorentzian 2-space. The fundamental

 group of such an M3 can be characterized as a group which is polycyclic of rank 3

 but contains no nilpotent subgroups of finite index. It is also shown that these

 manifolds admit no flat conformal structure.

 THEOREM A. Let Mn be a closed conformally flat manifold whose conformal

 holonomy group is virtually nilpotent. Then Mn is covered by an n-sphere Sn, a flat

 n-torus Tn, or a Hopf manifold sl X Sn-1.

 THEOREM B. Let Mn be a closed conformally flat manifold whose conformal

 holonomy group is virtually polycyclic of rank < 3. Then the conclusions of Theorem A

 hold.

 Theorems A and B show that many higher-dimensional manifolds do not admit

 flat conformal structures. For example let M be a 3-dimensional torus bundle over

 the circle which is not covered by a 3-torus and S any simply connected manifold.

 Then M X S has no flat conformal structure.

 We say that a group r is virtually nilpotent (resp. polycyclic, abelian, etc.) if r

 admits a nilpotent (resp. polycyclic, abelian, etc.) subgroup of finite index. For a
 discussion of conformal holonomy group, see 1.1. In general, the conformal holo-

 nomy group r of a conformally flat manifold M is a homomorphic image of 7TI(M)
 in the group Conf(Sn) of conformal transformations of sn, and is well defined only

 up to conjugacy in Conf(Sn). In particular, Theorems A and B remain valid if

 "conformal holonomy group" is replaced by "fundamental group". Theorem A thus
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 CONFORMALLY FLAT MANIFOLDS 575

 generalizes work of Kuiper [12] which reaches the same conclusions assuming that

 7TI(M) is abelian.
 We do not know if Theorems A and B can be generalized to the case that M has

 solvable holonomy. Probably a proof of this can be worked out using ideas of Fried

 [4], although the present paper is completely independent of the arguments in [4].

 COROLLARY C. Let M3 be a 2-torus bundle over the circle. Then M admits a flat

 conformal structure if and only if the attaching map of this bundle is periodic.

 (This answers a conjecture of Gromov.)

 Theorems A and B are proved in ??1 and 2, respectively. In ?3 we prove certain

 algebraic lemmas which are used in the proofs of Theorems A and B. In ?4 we

 briefly discuss an analogous kind of geometric structure ("pseudoconformally flat")

 and state the analogues of Theorems A and B for this case.

 I thank the University of Colorado for their hospitality, the National Science

 Foundation for its support while this work was in progress, and D. Fried, M. Hirsch,

 R. Kulkarni, D. Sullivan and W. Thurston for their encouragement and helpful

 suggestions. I have been informed that many of these results were known to R.

 Kulkarni, and I am grateful to the referee, as well as Professor Kulkarni, for

 pointing out an error in the original manuscript.

 1. Conformally flat manifolds with nilpotent holonomy. In this section we prove

 Theorem A, namely that every closed conformally flat manifold with nilpotent

 holonomy has a finite covering which is conformally diffeomorphic to either an

 n-sphere sn, a flat n-torus Tn, or an n-dimensional Hopf manifold Sn-I X S1. Our
 proof is based on several algebraic lemmas concerning the group Conf(Sn) of

 orientation-preserving conformal diffeomorphisms of sn. These lemmas will be

 proved in ?3.

 Observe that both the hypotheses and conclusions of our results remain un-

 changed by replacing M be a finite covering of M. Therefore we pass to finite

 coverings whenever convenient.

 We recall the notions of development and holonomy of a flat conformal structure.

 For details and proofs, see Kuiper [11], Kulkarni [13] or Thurston [16].

 1.1 DEVELOPMENT THEOREM. Let Mn be a conformally flat manifold, and let

 p: M -- M denote a universal covering of M with covering group 7r1(M). Then there

 exists a pair (dev, 4) where dev: M __ Sn is a conformal immersion and 4: TI(M) -3
 Conf(Sn) a conformal action of 7rI(M) on S n such that for all g E 7TI(M) the diagram

 dev
 M Sn

 g I sk(g)
 dev

 M - Sn

 commutes. Moreover, if (dev', 4') is another pair for the same flat conformal structure,

 then there exists h E Conf(Sn) such that dev = h dev' and +'(g) = ho(g)h-l for all
 g EE I(M).
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 576 W. M. GOLDMAN

 The map dev: M -* S' is called a developing map for M and 4): q1(M) Conf(Sn)

 "the" (conformal) holonomy homomorphism of M. Its imager F 4(v,r(M)) is called
 the (conformal) holonomy group of M.

 1.2. An important principle is that if r preserves some kind of "structure" on the

 developing image dev(M) of M, then M inherits such "structure" locally. For

 example if X is a r-invariant tensor field on Sn then there is a unique tensor field Wm

 on M such that p * wM = dev * w. Here is another example:

 PROPOSITION. Suppose V C Sn is closed and r-invariant; then p(dev1 V) is a closed

 subset of M.

 PROOF. The closed subset dev-1 V C M is 7T,(M)-invariant since V is r-invariant.
 Thus its image under p: M -M is also closed. Q.E.D.

 1.3. Suppose that M is a conformally flat manifold whose holonomy group r fixes

 a point x0 outside of the developing image. We may choose Eucidean coordinates

 on Sn - {X0} such that Sn - {X0} is identified with RI and x0 corresponds to the

 point at so. In these coordinates a conformal map of Sn which fixes x0 defines a

 similarity transformation of RW. It follows that the flat conformal structure on M is

 locally modelled on RW with coordinate changes lying in the group Sim(RW) of

 similarity transformations of RW. Such a conformally flat manifold M is called a

 similarity manifold. In [4] Fried shows that a closed similarity manifold M is finitely

 covered by either a flat torus or a Hopf manifold. Our techniques are considerably

 more elementary than those of [4] and, although our proofs could be shortened using

 [4], we give an entirely independent argument.

 LEMMA 1.4. Let r C Conf(Sn) be virtually solvable. Then either r is conjugate to a

 subgroup of O(n + 1) or there exists a subgroup rF c r of finite index which is

 conjugate in Conf(Sn) to a subgroup of Sim(RW).

 The proof will be given in ?3, as will the proofs of several other algebraic lemmas,

 such as the following two facts.

 LEMMA 1.5. Suppose that r c Sim(RW) is nilpotent. Then there exists a finite-index

 subgroup rF c r such that either

 (i) rF consists of Euclidean isometries of RI, or

 (ii) rF is conjugate in Sim(RW) to a subgroup of the isotropy group

 Sim0(Rn) = {g E Sim(RW): g(O) = 0) -R+ X SO(n).
 LEMMA 1.6. Let r be a finitely generated nilpotent subgroup of the group Euc(RW) of

 isometries of RW. Then the subset consisting of 4 C Hom(r, Euc(RW)), such that +(r)
 contains a group of translations with finite index, is dense in Hom(r, Euc(RW)).

 1.7. Assuming these lemmas we now prove Theorem A. By Lemmas 1.4 and 1.5 we

 may pass to a finite covering to assume that r satisfies (i) r C O(n + 1), (ii)

 r C Euc(RW) or (iii) r c Simo(RW).
 In case (i), r C O(n + 1), there is a spherical metric (i.e. constant curvature + 1)

 on Sn preserved by r. Such a metric induces a 7T,(M)-invariant spherical metric on
 M for which dev is a local isometry. This metric defines a spherical metric on the
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 CONFORMALLY FLAT MANIFOLDS 577

 compact manifold M and, therefore, is complete. It follows from completeness that

 dev: M -- S' is an isometry and M is a quotient of S' by a finite group of

 isometries.

 Suppose, then, that (ii) r c Euc(R"). When so 4 dev(M) the tensor field

 2'= I dxi dxi defines on M a flat Riemannian metric, and we may apply Bieberbach's
 "classification" of flat Riemannian manifolds [18] to achieve our conclusion. How-

 ever our assumption of nilpotent holonomy is so strong that even the use of this

 well-known theorem can be avoided.

 Applying 1.6 to the holonomy representation of M, we find representations 4'

 arbitrarily near to 4 which satisfy the conclusion of 1.6. By the basic deformation

 theorem on geometric structures (see [6] or Thurston [16, 5.1]), some 4' is the

 holonomy of a nearby flat conformal structure. Replacing M by this nearby

 conformally flat manifold and passing to a finite covering, we may assume that r

 consists entirely of translations of RW.

 Let Xl,.. .,X,, be analytic vector fields on S' which are zero at so, and on RW are
 the parallel vector fields 3/3x1,...,3/3x,. There are unique analytic vector fields

 XI,...,Xn of M such that p*X1 = dev*Xi. (These pullbacks make sense because p
 and dev are local diffeomorphisms.) In local coordinates the Xi are seen to commute;
 thus the Xi generate a local Rn-action on M. Since M is closed this local Rn-action
 extends to a global Rn-action a: R X M -3 M. The stationary set of a is precisely

 F =p(dev'({O}), which by Proposition 1.2 is a closed subset of M. Since F is
 discrete and M is compact, it follows that F is a finite subset of M. Since the Xi are
 (infinitesimally) conformal, a acts by conformal transformations.

 Now the action generated by {Xl,... ,XnJ is transitive on RW = Sn - {fo} so that
 a is locally simply transitive on M - F. It follows easily that the developing map is a

 covering of (M - F) onto Sn - {to} (since dev is equivariant respecting the local
 Rn-actions). Since S n- oo } is simply connected, dev must define a diffeomorphism

 (M - F) - Sn{-o}. Thus M - Fmust be a quotient (Sn -{oc})/r, where r is

 a discrete group of translations.

 When F is empty this means that M is a flat n-torus. When F is nonempty we

 prove that r is actually trivial and dev: MI __ Sn is a homeomorphism. This is
 proved inductively on n > 2. The first step in the induction follows from

 LEMMA 1.8. Let M2 be a surface with flat conformal structure, i.e. there is a

 representation 4: TI(M) -* Conf(S2) for which an immersion dev: M -* S2 is equi-
 variant. Suppose that 0(TI(M)) fixes a point xo of S2. If xo E dev(M) then
 dev: M __ S2 is a diffeomorphism.

 This follows from the classification of such structures in Gunning [7, 8]. Gunning

 actually works with projective structures on Riemann surfaces but these notions

 agree, i.e. (S2, Conf(S2)) = (CP', PSL(2, C)).
 Suppose, inductively, that n > 2 and every closed conformally flat manifold

 (m < n), whose holonomy consists of translations of S m - { o } and x E dev(M),

 must be an m-sphere. Let Mn be such a conformally flat n-manifold. We prove that

 Mn must be sn.

This content downloaded from 
�������������129.2.19.102 on Mon, 09 Nov 2020 13:38:35 UTC�������������� 

All use subject to https://about.jstor.org/terms



 578 W. M. GOLDMAN

 If r contains n linearly independent translations, then M - F = Rn/r is compact

 and clearly F = 0 since M is connected. Thus we may assume that r contains at

 most r independent translations, where 0 < r < n. Then there exists a one-parameter

 family of r-invariant (n - 1)-spheres L in Sn (parallel hyperplanes in the Euclidean

 space RW = Sn - {fo}) such that any pair of them intersect only in so where they
 are tangent.

 Since so E dev(M), some (n - 1)-sphere L meets dev(M) in an open subset of E.

 By 1.2 the set p(dev-1 :) is a conformally flat submanifold M, of M having
 dimension n - 1, and whose holonomy group is nontrivial, since dev: (M - F) + RW

 is a diffeomorphism. Since the holonomy group of M, is nontrivial, the induction
 hypothesis implies that so 4 dev(M), a contradiction. This complete the proof of
 Theorem A in case (i).

 1.9. Now suppose that r C Simo(RW) = R+ X SO(n). Thus r fixes two points, so
 and 0. Suppose first of all that dev(M) contains neither so nor 0. Then the tensor

 field (En j(Xi)2)-12n j(dxi)2 on Sn is r-invariant and defines a Riemannian metric g
 on M for which dev: M __ Sn - {o, o } is a local isometry. Since M is closed, g is

 complete so that dev is a covering. An easy argument (see [4, p. 581]) implies that M

 is finitely covered by a Hopf manifold.

 Thus we suppose that {O, so} meets dev(M). The conformal vector field R on Sn

 which vanishes at x and equals En=I xi(a/axi) on RW is r-invariant, and thus there
 is a conformal vector field RM on M2 such that p*RM = dev*R. The set of zeroes of

 RM is precisely the union FO U FO( when Fo =p(dev {cc}) and F. =p(dev {O})
 are finite subsets as before. Since M is closed, RM generates a flow {Pt}teR by

 conformal automorphisms of M.

 Suppose that F. is nonempty (the analogous case of FO nonempty follows from
 this case by changing direction of the flow p). Let q C F. and let W = {x C
 M: p,(x) -- q as t -+ o}) be the attracting basin for q under p. Clearly W is a
 nonempty open subset of M. Since dev, restricted to a neighborhood U of q, is

 injective, and every x C W is mapped into U by pt for some finite t, it follows that

 dev: W-- Sn - {0} is a homeomorphism. Thus W is closed in M - FO. Since
 M - FO is connected, it follows that M - FO = W and is difeomorphic to a disc. In
 particular, FO is nonempty.

 Since Mn is a closed manifold and FO a finite set of points, Hn -(M - FO)
 vanishes precisely when FO has one element. This easily implies that M is homotopy
 equivalent to sn. Since Mn is simply connected, it immerses in Sn and therefore
 must be Sn.

 This concludes the proof of Theorem A.

 2. Holonomy polycyclic of rank 3. In this section we prove Theorem B, once again

 referring algebraic lemmas to the next section. Let Mn be a closed conformally flat
 manifold and suppose that its conformal holonomy group r c Conf(Sn) is virtually
 polycyclic of rank < 3. (For definitions and the properties of polycycic groups, the
 reader is referred to the first three chapters of Raghunathan [14].) It is easy to prove

 that if rank r < 3 then it is virtually nilpotent, and if rank r = 3 and r is not
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 CONFORMALLY FLAT MANIFOLDS 579

 virtually nilpotent, then r contains a finite-index subgroup isomorphic to a semi-

 direct product Z2 Xl Z, where the Z-action on Z2 is generated by a matrix A E

 SL(2, Z) with distinct positive real eigenvalues. We pass to a finite cover of M to

 assume that r is such a group.

 Since r is solvable it fixes a point in S' (see 1.4) which, as before, we denote by

 so. As before, we use Euclidean coordinates on R = S' - { o }, so that r c

 Sim(R ) C Conf(Sn).

 LEMMA 2.2. Suppose r C Sim(RW), as above, and is not virtually nilpotent. Then r is

 conjugate in Sim(RW) to a subgroup generated by a similarity mapping x -3 XPx (where
 X E R is an irrational quadratic integer and P E SO(n)) and a nontrivial translation

 x -- x + q, q EE R, where P'q = q. In particular, if P = 1 then r leaves invariant a

 unique line 1 = Rq C W and each half-plane HS = Rq + R+ (, where ( ER W ranges
 over vectors linearly independent from ".

 We shall call P the rotation component of r. Note that P defines a homomorphism

 r -- SO(n) whose image is cyclic.

 LEMMA 2.3. Let r be as above. Then the collection of all 4 E Hom(r, Sim(Rn)),

 whose restriction to some subgroup of finite index in r has no rotation component, is

 dense in Hom(r, Sim(Rw)).

 Lemma 2.3 and the local deformation theorem for geometric structures (as in 1.7)

 imply that we may perturb the conformally flat structure and pass to a finite

 covering to assume that r is generated by a homothety and a translation.

 These assumptions imply that r C Conf(Sn) leaves invariant the circle SI = 1 U

 { x } as well as each leaf of the "singular foliation" of S n by 2-spheres S2 =S U Hu
 U H_I. For each (, the set p(dev` S 2) is a closed 2-dimensional submanifold with a
 flat conformal structure. We denote by & the set whose elements are the connected

 components of all p(dev-1 S2).

 Now we prove Theorem B. We start by assuming that so E dev(M). Let x E

 p(dev-{ lo }) and let U be an open neighborhood of x in M. Then every u E U lies

 in a unique Su E S.
 It follows from 1.8 that each Su is either S2 or RP2. Suppose that some Su RP2.

 Then some y E r corresponds to the generator of 7T,(S) -Z/2, but each y E r
 fixes a point (namely oc) in the universal covering SV of SU, a contradiction. Thus all
 the Su are 2-spheres.

 Since U is open, U uEUSu is an open subset of M. But since U S2 is all of Sn,

 U uEUSu is also closed. As M is connected, it is the union of all 2-spheres Su. Since
 dev: M -) S n is injective on each p-'Su, it is injective on M. Thus dev: M -* S n is a
 homeomorphism and M is covered by sn.

 Now we suppose so 4 dev(M) and M is a similarity manifold. It follows from [4]
 that M is covered by either a Hopf manifold S' X sn nl- or T. However, we sketch an

 alternate proof.

This content downloaded from 
�������������129.2.19.102 on Mon, 09 Nov 2020 13:38:35 UTC�������������� 

All use subject to https://about.jstor.org/terms



 580 W. M. GOLDMAN

 If 1 is disjoint from dev(M) then each p(dev-1 H~) is a closed 2-dimensional
 submanifold with a similarity structure modelled on a half-plane. Since the develop-

 ing image of a closed similarity 2-manifold is either R2 or R2-{point} (Gunning [8],

 Thurston [16]), we conclude dev(M) n 1 is nonempty.

 Thus the closed submanifold L = p(dev-1 1) is nonempty. Let U be an open

 neighborhood of L in M. Then U meets a submanifold p(dev-1 Se), which by the

 classification of similarity structures on surfaces must be a Hopf 2-torus. As in the

 first case treated in this section, we express M as a union of such Hopf tori and we

 find that M is a Hopf manifold of dimension n.

 3. Groups of conformal transformations. One way to understand the conformal

 geometry of Sn is to consider a quadric hypersurface in Rpn+ 1. That is, let Q denote

 the submanifold {[x0,..., Xn+1] C Rpn+1 x:2 + x4 + +X2 -Xn2+1 = 0). Then
 Q is an n-sphere and the group of projective transformations preserving Q is the

 orthogonal group SO(n + 1, 1). It is a theorem of Liouville that SO(n + 1, 1) is the

 full group of conformal transformations of nsn. For the proof, see Spivak [15] or
 Kobayashi [10].

 PROOF OF LEMMA 1.4. Suppose that r C Conf(Sn) is a solvable subgroup. Then

 the Zariski closure A(r) of r in SO(n + 1, 1) is a solvable algebraic subgroup of

 SO(N + 1, 1). Being an algebraic group, A(r) has finitely many connected compo-

 nents (in its Lie group topology), and if we denote by A(o)0 its identity component,
 then r'1 r C A(r)0 has finite index in r. Now every connected solvable algebraic
 subgroup of a semisimple algebraic group lies in either a compact group or a

 parabolic subgroup P. The parabolic subgroups of SO(n + 1, 1) are precisely those

 subgroups conjugate to Sim + (Rn) = (R+ 0 0(n)) x RW, and every compact group is
 conjugate to a subgroup of 0(n + 1). Thus rF fixes a point in SO(n + 1, 1)/P = Sn
 or is conjugate to a subgroup of 0(n + 1). QED

 For a more geometric proof using the associated symmetric space (which is

 hyperbolic n-space), see Chen and Greenberg [2, ?4.4].

 PROOF OF LEMMA 1.5. Now suppose r C SO(n + 1, 1) is nilpotent. Once again

 rF = r. A(r)0 has finite index in r and lies in a connected nilpotent subgroup A(r)0
 of SO(n + 1, 1). By 1.4, A(r)0 can be conjugated to lie in the similarity group

 Sim(RW). Thus we assume r C Sim(RW) is nilpotent, but r does not lie in the group
 Euc(RW) of Euclidean isometries of RW. We prove that r may be conjugated to lie in

 Simo(R ).

 Since every element of Simo0(R) not in Euc(RW) has no eigenvalues equal to 1, we
 may choose S C r - Euc(R), which by conjugation we assume fixes 0, i.e. Sx = XPx

 where X > 0 and P C SO(n). Replacing S by a power, we assume that X < 2.
 Choose some nontrivial T Er n Euc(RW). Since the commutator subgroup of

 Sim(RW) equals Euc(RW), this is possible unless r is abelian, in which case r

 centralizes T; this readily implies r C Simo(RW). Moreover, we may assume T 5
 Simo(R ).

 Writing Tx = Ax + b, with A C SO(n) and nonzero translational part b, we
 easily compute that

 [S, T]x = [P, A]x + P-'A-'(Pb -A-b)
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 CONFORMALLY FLAT MANIFOLDS 581

 where [S, T] = S-'T-'ST. It follows that the translational part of [S, T] has length

 Pb - XA b > (X1 - 1) I b I > I b I . In particular, the translational part of
 n

 , T ], .. ST'.. ]

 must have length > (X-1 l)y I b I> I b l, contradicting nilpotence. Thus b 0 and
 F c Simo(Rw).

 PROOF OF LEMMA 1.6. We now suppose that r C Euc(RW) is a fiiiitely generated
 nilpotent subgroup. Euc(RW) splits as a semidirect product SO(n) x RW. We observe
 that the conclusions of 1.6 remain valid if we replace F by a finite index subgroup.

 Let L: Euc(RW) -- SO(n) be the canonical homomorphism.
 It follows from [5, ?1], that if F c Euc(RW) is nilpotent there exists a maximal

 F-invariant affine subspace Eu of RW upon which r acts by translations; such a
 subspace Eu is unique. By conjugating by a translation we may assume 0 e Eu; then
 (Eu)' is the unique L(r)-invariant linear subspace F C RW such that RW = Eu ED F.
 Let A denote the group of translations in Eu, and let T denote a maximal torus (i.e.
 maximal closed connected abelian subgroup) in the subgroup SO(F) of SO(n)

 which leaves F invariant; it is well known that T is unique up to conjugacy in SO(F)

 and is actually a maximal connected nilpotent subgroup of SO(F). It follows that

 every connected nilpotent subgroup of Euc(RW) lies in some A X T and, therefore,

 after possibly passing to a subgroup of finite index, r c A X T.

 The image L(F) of r in A contains a free abelian subgroup of finite index.

 The proof of Lemma 1.6 is completed by noticing that the set of 4 E
 Hom(Zr, T X ..* X T) whose image is a finite group is dense in Hom(Zr, T).

 Indeed, writing T = R/Z X ... X R/Z, this set is precisely the set of rational points

 in (R/Z)r(dim T) Q.E.D.

 PROOF OF LEMMA 2.2. Suppose r c Sim(RW) is polycycic of rank 3 but not
 virtually nilpotent. Then we may replace r by a finite-index subgroup which

 decomposes as a semidirect product Z2 Xl Z, where Z acts on Z2 by a matrix

 A E SL(2, Z) having distinct positive eigenvalues. Since Z2 iS the commutator

 subgroup of r, it consists of translations. We will show that this group of transla-

 tions lies in a one-dimensional group of translations.

 Since A has determinant 1, it has eigenvalues A, A-1 where X > 1 is an irrational

 quadratic integer. Let T denote the linear span of Z2 in the group of translations.

 Clearly dim T - 2 and dim T > 0 since r is nonabelian. Thus dim T = 1 or 2.

 Suppose that dim T = 2. Then Z2 is generated by linearly independent transla-

 tions x -* x + m i and x x + 'r 2 such that a generator y of Z F r/Z2 acts on these
 translations via A. It follows that T contains a pair of eigenvectors for the action of y

 with eigenvalues X' 1. However, a similarity transformation is either an expansion, a

 contraction, or a Euclidean isometry, and therefore cannot have one eigenvalue
 greater than one and another eigenvalue less than one.

 Thus dim T = 1. Let qr be a vector such that translation by qr is a generator of Z2.
 An independent generator of Z2 iS of the form rq1 where r E R. The relations in r
 imply that we may take r = A. Thus an element y E r which maps to a generator of
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 Z = F/Z2 is a similarity transformation having X as an eigenvalue with eigenvector

 7. Thus y = XP where P C SO(n) fixes'q. Q.E.D.
 PROOF OF LEMMA 2.3. Retaining the notation from the proof of 2.2, we see that

 the orthogonal (or linear) part L(F) of r leaves invariant the subspace El orthogonal

 to Rij. Thus r lies in the product Sim(Rq) X SO(El), where SO(El) is the subgroup
 of SO(n) leaving El invariant. The image of r in SO(El) is cyclic because Z2 C r
 acts by translations of R'q. As in the proof of 1.6 we easily approximate the inclusion

 i: r -* Sim(Rij) X SO(El) by representations r -- Sim(Rq) X SO(El) which coin-
 cide with i on the Sim(R'q)-factor, but whose image in SO(El) is finite cyclic. This
 proves 2.3.

 4. Other structures. As noted in the introduction, Theorems A and B have

 applications to the uniformization problem for 3-manifolds. Namely, it shows that

 not all 3-manifolds have flat conformal structures. Those 3-manifolds which we have

 proved do not admit such structures each have natural geometric structures in the

 sense of Thurston [17] (i.e. locally homogeneous Riemannian metrics). Those closed

 3-manifolds M such that v1(M) is virtually nilpotent, but not virtually abelian, all

 have metrics locally modelled on the Heisenberg group H. This result follows from

 Evans and Moser [3], combined with Scott [9] in the non-Haken case. Thus, although

 these manifolds do not admit that conformally flat metrics, they are nonetheless

 "geometric".

 However, there is an interesting geometric structure which these manifolds do

 admit. Namely, consider a real quadric Q in the complex projective n-space,

 n

 Q = {[Z? S-zn] E Cpn+1 : |0 2- l2_ l z i12 = 0 ts2n+l

 with the group PSU(l, n + 1) C PSL(n + 1, C) of projective transformations pre-

 serving Q. We call a structure locally modelled on (Q, PSU(l, n + 1)) a flat pseudo-

 conformal structure (see [1] and the references given there). Once again, solvable

 subgroups of PSU(l, n + 1) contain finite-index subgroups r which stabilize a point

 of Q and, if r is nilpotent, either it stabilizes a pair of distinct points or lies in a

 compact extension of a maximal unipotent algebraic subgroup of PSU(l, n + 1).
 However, unlike the case of flat conformal structures, these subgroups are not

 abelian, but rather the (2n + 1)-dimensional Heisenberg group H2n+ l which can be

 expressed as a nontrivial central extension R -- H2n+l CCn.
 Anyway, the proofs of Theorems A and B may be adapted to this new geometry.

 The modifications (which we do not give here) yield the following result.

 THEOREM 4.1. Let M2n+ be a closed pseudoconformally flat manifold whose

 fundamental group (or, more generally, its holonomy group r C PSU(l, n + 1)) is

 either virtually nilpotent or virtually polycyclic or rank 3. Then M is finitely covered by

 a manifold in one of the following three classes:

 ()s2n+ 1. (a) S~'
 (b) a Hopf manifold Sl X S2n;
 (c) a nilmanifold H/r where r C H is a discrete cocompact subgroup.
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 CONFORMALLY FLAT MANIFOLDS 583

 COROLLARY 4.2. A T2-bundle over S' admits a flat pseudoconformal structure if and

 only if its attaching map A E SL(2, Z) has infinite order but all its eigenvalues are ? 1.

 Therefore tori do not admit such structures although compact quotients of the

 Heisenberg group do.

 Which 3-manifolds admit flat conformal or pseudoconformal structures? We have

 obtained complete answers only under a very strong assumption-that the funda-

 mental group is solvable. One knows that hyperbolic 3-manifolds are conformally

 flat, but we know no examples of flat pseudoconformal structures on any member of

 this very rich class of 3-manifolds. Similarly, products of a circle with a hyperbolic

 surface E have conformally flat structures, and some nontrivial circle bundles over E

 have pseudoconformally flat structures [1], but we know practically nothing to

 exclude the existence of flat conformal structures on twisted bundles and flat

 pseudoconformal structures on products.
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