
GEOMETRY FOR COMPUTER APPLICATIONS
COURSE NOTES

MATH 431- FALL 2022
UNIVERSITY OF MARYLAND

This course develops the theory of data types for computer applica-
tions. Specifically we develop algebraic data types for computer graph-
ics, computer vision and robotics. If we take points, lines, lengths,
angles, areas, etc. as the (extremely basic) building blocks of graphics,
then an over arching theme is to discover ways in which to represent
these geometric objects in a computer. Simultaneously, we aim to de-
velop ways in which to represent in a computer the manner in which
these geometric objects transform.

1. Imagine designing a video game!

Your avatar is flying a spaceship through a hazardous
jungle populated by wild monsters, evil dinosaurs and
poisonous plants, with dangerous objects zipping by.
Throw in a few earthquakes, tsunamis, hurricanes and
tornados, too, just for fun.

Date: September 10, 2024.
1



2 MATH 431- FALL 2022

Of course enemies are chasing you, shooting rockets
and subjecting your craft to waves of treacherous force
fields. In addition to steering your vehicle, you need
to be able to change your viewpoints and perspectives
in order to fully gauge your direction and speed. Your
instruments need to sense all the awful perils your ad-
versary has aimed at you. Your survival, and the lives
of millions of other people, depends on being able to
manipulate — reliably, quickly, and in real time — huge
amounts of graphical data by many types of geometric
transformations: rotations, dilations, translations, re-
flections, and changes of perspective.

2. Goals

• Due to total size of the graphical data, the data types must be
compact and efficiently designed.
• Due to the demands of interactive use, the computations must

be as fast as possible.
• Due to the demands of ever-changing technology, the code must

be easy to debug, maintain, and update. Thus the data types
and the manipulation routines must be readable, succinct and
comprehensible to other programmers.
• The data will ultimately be vectors and matrices, and the math-

ematical routines basically linear algebra. Matrix operations
are cheap, efficient and easy to implement. The compelling ad-
vantage of linear transformations is that —by using coordinates
on a vector space defined by a basis — the geometric informa-
tion is encoded in a finite set of numbers. It’s only how they
are manipulated which varies by their context.

Here are some examples of how abstraction and mathematical elegance
are both means and end in regards to computer applications.

3. Data types in plane geometry

First consider the familiar case is that of points in the plane. Points
are described uniquely by an ordered pair of numbers. Vector op-
erations enable us to compute geometric relations (such as distance)
between points. Furthermore transformations of the plane are conve-
niently described by matrices. The calculations are cheap to implement
on a computer, easy to understand.

Trying to do the same for lines in the plane is more difficult and more
interesting. However, programming a video game may require you to



MATH 431- FALL 2022 3

transform lines and, eventually, more complicated graphical objects, in
a similar way. The reality is that lines in the plane are not as easy to
parametrize as points in the plane: the set of lines does not admit a
coordinate system as easy as just the (x, y)-coordinates which uniquely
describe arbitrary points.

Here are some ways we describe lines in the plane. As you can see,
none of them are as convenient as parametrizing points in the plane.

(1) Given two distinct points p1 and p2 (represented as 2-vectors),
the line ←→p1p2 joining them is described by equations

y − y1
x− x1

=
y2 − y1
x2 − x1

or, in parametric form,

x = x1 + t(x2 − x1)
y = y1 + t(y2 − y1)

This parametrization has the following drawbacks:
• The points p1, p2 are not unique and may not be so efficient

to find; there are many pairs of points which determine a
given line.
• Determining when two different pairs (p1, p2) determine the

same line may be unnecesarily time-consuming.
• The initial data requires that p1 6= p2. Checking this each

time is necessary (and time-consuming).
(2) Given a slope m ∈ R and b ∈ R, the line with slope m and

y-intercept b has slope-intercept form

y = mx+ b.

This efficiently parametrizes all non-vertical lines uniquely by
the pair (m, b) ∈ R2. However, vertical lines have “infinite
slope” (m =∞) and don’t fit nicely into this parametrization.
However they are parametrized by the x-intercept a ∈ R: the
vertical line corresponding to a ∈ R is given by x = a.

(3) One can remove (or, more accurately, “hide”) the difficulty with
infinite slope by replacing the slope m by the angle of inclina-
tion, that is, the angle θ the line makes with the x-axis. These
two parameters relate by:

m = tan(θ)

However, like all angles, θ is only defined up to multiples of π.
One can restrict θ to lie in an interval, say, 0 ≤ θ < π, but this
line does not vary continuously as θ ↗ π.



4 MATH 431- FALL 2022

(4) Lines may also be parametrized by their closest-points as fol-
lows. A line L contains a unique point p which is closest to
the origin O. If p 6= O, then this point determines L uniquely.
However, the case p = O (that is, when L 3 O) has to be
handled separately, like the vertical lines in the slope-intercept
parametrization.

3.1. Topology is the villain. The problem cannot be solved easily,
since it reflects a fundamental fact, involving the topology of the set
of lines in the plane. Unlike the points in the plane, which form a
tractable algebraic object (a vector space), the lines in the plane form
a space which is inherently more complicated. “Topology” refers to
how the elements of the set are organized, and even for simple familiar
objects, the topologies are very subtle.

Angles are illustrative of this phenomenon. Since the set of angles
“closes up” —- when you go around a full 360o — the set cannot be
identified with a set of numbers or vectors in a completely satisfactory
way. One has to introduce special cases to handle exceptions, and there
is no way to get around this.

Other situations, like sets of lines in the plane or 3-space, lead to even
more complicated topologies. For these two cases, the set is nonori-
entable, like a Möbius band, and this is particularly difficult to coordi-
natize.

Projective geometry began by the efforts of Renaissance architects
and artists to deal with perspective. Projective space enlarges our usual
space by introducing new points (called ideal points) which is where
parallel lines eventually meet. (Imagine an aerial view of railroad tracks
converging in the horizon.)

Projective space also has a very complicated topology; for example,
the projective plane is nonorientable. It enjoys a set of homogeneous
coordinates, which are only unique up to scaling — and to do calcula-
tions in projective geometry one has to work only in pieces of the space
which are manageable and do admit vector coordinates. The geomet-
ric calculations all reduce to matrix operations in linear algebra, but
to specify an arbitrary point in two-dimensional projective space, one
needs three coordinates.

3.2. Transformations and data types. Certain types of transfor-
mations work better in certain coordinate systems. For example, polar
coordinates behave very well under rotations, but they can be extraor-
dinarily awkward in others. Try writing down the expression for a
translation in polar coordinates and compare it to the expression in
rectilinear coordinates.



MATH 431- FALL 2022 5

Transformations preserving some special geometric properties may
be suitable for special data types, which can by more succinct and more
efficient. For example, angle-preserving transformations can be written
very elegantly in terms of complex numbers: if z ∈ C is a complex
number, then the affine transformation z 7−→ λz+τ , where λ ∈ C\{0}
and τ ∈ C is the most general orientation-preserving transformation
which preserves angles. Whereas general affine transformations of the
plane need six numbers, angle-preserving transformations depend only
on two complex numbers, which is equivalent to four (real) numbers.
This represents a significant improvement in the storage of data.

In 3 dimensions, rotations are more complicated, but they can be
represented very elegantly using quaternions, the four-dimensional gen-
eralization of complex numbers. A linear rotation of R3 admits a very
nice description in terms of quaternions, generalizing the remarkable
formula

eiθ = cos(θ) + i sin(θ)

Quaternions are more complicated than complex numbers, largely
due to the fact that AB 6= BA in general. However, they are easily
implemented in terms of standard vector operations. Discovered in
1843 by W. R. Hamilton (long before the advent of computer graphics)
they are now a standard component of graphical hardware.

4. Overview

In this course we will discuss various data types for geometric objects
and their transformations. After a review of linear algebra, vectors and
matrices, we discuss Euclidean plane geometry via complex numbers.
From that we discuss projective geometry (the geometry of perspective)
in dimension two. From there we move to 3-dimensional Euclidean ge-
ometry, using quaternions to elegantly represent rigid motions (isome-
tries) of Euclidean 3-space. Finally we bring all this together, giving
parametrizations of points, lines and planes in projective 3-space.


