
THE LEVI-CIVITA CONNECTION FOR THE
POINCARÉ METRIC

We denote complex numbers z = x+ yi ∈ C where x, y ∈ R.
Let H2 denote the upper half-plane

{x+ iy|x, y ∈ R, y > 0}

with the Poincaré metric:

g =
|dz|2

y2

We compute the Levi-Civita connection ∇ with respect to several dif-
ferent frames.

1. The usual coordinate system on H2

Let ∂x, ∂y be the coordinate vector fields, so that:

g(∂x, ∂x) = g(∂y, ∂y) = y−1(1)

g(∂x, ∂y) = g(∂y, ∂x) = 0.(2)

The vector fields

ξ := y−1∂x

η := y−1∂y

define an orthonormal frame field.

Theorem. In terms of the coordinate frame, the Levi-Civita connection
is given by:

∇x∂x = y−1∂y(3)

∇x∂y = −y−1∂x(4)

∇y∂x = −y−1∂x(5)

∇y∂y = −y−1∂y(6)

Date: wmg, July 17, 2014.
1



2 LEVI-CIVITA CONNECTION

In terms of the orthonormal frame, the Levi-Civita connection is given
by:

∇ξξ = η

∇ξη = −ξ
∇ηξ = 0

∇ηη = 0

Proof. Orthonormality implies g(y∂x, y∂x) = 1 is constant, whence

0 = ∂yg(y∂x, y∂x)

= 2g(∇y(y∂x), y∂x)

= 2yg(∇y(y∂x), ∂x)

= 2y(g(∂x, ∂x) + yg(∇y∂x, ∂x))

= 2y(y−1 + yg(∇y∂x), ∂x)

and

(7) g(∇y∂x, ∂x) = −y−3.

Differentiating the constant g(y∂y, ∂y) with respect to x:

(8) 0 = 2∂xg(∇x∂y, ∂x)

whence

(9) g(∇y∂x, ∂x) = 0.

Since ∇ is symmetric,

(10) ∇x∂y = ∇y∂x.

Combining (9) with (10):

g(∇x∂y, ∂y) = −y−3

and combining with (8), yields (4). Applying (10) again yields (5).
Differentiating g(y∂x, y∂x) = 1 with respect to ∂x yields:

(11) g(∇x∂x, ∂x) = 0

Similarly, differentiating with respect to ∂y;

(12) g(∇x∂x, ∂x) = y−3

which implies (3).
Differentiating g(y∂x, y∂y) = 0 with respect to ∂y yields:

(13) g(∇y∂y, ∂x) = 0

Similarly, 0 = ∂yg(∂y, ∂y) implies;

(14) g(∇y∂y, ∂y) = −y−3
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which implies (6).
The routine calculations for the orthonormal frame are omitted. �

2. Connection 1-form for orthonormal frame

Denote the coframe field dual to the orthonormal frame by:

ξ∗ := ydx

η∗ := ydy.

The covariant differentials of the orthonormal frame are:

∇ξ = η ξ∗

∇η = −ξ ξ∗

so the connection form is:[
0 ξ∗

−ξ∗ 0

]
= −y−1dx

[
0 −1
1 0

]
3. Geodesic curvature of a hypercycle

We use these to calculate the geodesic curvature of a hypercycle. The
positive imaginary axis iR+ is a geodesic with endpoints 0,∞. The
Euclidean rays from 0 subtending an angle θ with iR+ are hypercycles

reiθ = r
(

cos(θ) + i sin(θ)
)

= r
(

tanh(ρ) + i sech(ρ)
)

at distance ρ from iR+. The point x0 + i has coordinates

x0 =
tanh(ρ)

sech(ρ)
= sinh(ρ).

The curve

γ̃(t) := et(x0 + i)

has velocity vector and speed, respectively:

γ̃′(t) := et(x0∂x + ∂y)

= x0ξ + η

‖γ̃′(t)‖ =
√

1 + x2
0(15)

We compute the accelaration of γ̃(t):

D

dt
γ̃(t) = ∇x0ξ+η(x0ξ + η)

= x2
0η − x0ξ
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Now reparametrize γ̃(t) by unit speed:

γ(t) :=
1√

1 + x0

et(x0 + i)

and the geodesic curve is the tangential component of the acceleration:

D

dt
γ(t) =

1

1 + x0

(
x2

0η − x0ξ
)

which, since γ(t) has constant speed, equals:∥∥∥D
dt
γ(t)

∥∥∥ =
|x0|√
1 + x2

0

= sin(θ)

= tanh(ρ)

Similarly the geodesic curvature of a metric circle of radius ρ equals
coth(ρ). To see this, use the Poincare unit disc model: for |z| < 1, the
metric tensor is:

g :=
4|dz|2

(1− |z|2)2

and writing (hyperbolic polar coordinates)

z = eiθ tanh(ρ/2)

the metric tensor is g = dρ2 + sinh2(ρ)dθ2, with area form dA =
sinh2(ρ)dρ ∧ dθ. Consider a disc Dρ with (hyperbolic) radius ρ. Then
its circumference equals 2π sinh(ρ) and its area 2π(cosh(ρ) − 1. Let
kg be the geodesic curvature of the metric circle ∂Dρ. Applying the
Gauss-Bonnet theorem

2πχ(Σ) =

∫
Σ

KdA+

∮
∂Σ

kgds

to σ = Dρ obtaining:

2π = −2π
(

cosh(ρ)− 1) + kg
(
2π sinh(ρ)

)
,

that is,

kg = coth(ρ)

as desired.



LEVI-CIVITA CONNECTION 5

4. Fermi coordinates around a geodesic

Another convenient coordinate system begins with a geodesic and
considers the family of geodesics orthogonal to this one. Let u de-
note the parameter along the geodesic, and v the parameter along the
perpendiculars:

x = eu tanh(v)

y = eu sech(v).

Then sinh(v) = x/y and |z| = x2 + y2 = eu and u = 1
2

log(x2 + y2).
Writing

z = eu(tanh(v) + i sech(v))

dz = z(du+ i sech(v)dv)

|dz|2 = |z|2
(
du2 + sech2(v)dv2

)
with metric tensor

g =
|dz|2

y2
= cosh2(v)du2 + dv2.

The coordinate 1-forms are:

du = (x2 + y2)−1(x dx+ y dy)

dv = (x2 + y2)−1/2(y dx− x/y dy)

and dual coodinate vector fields:

∂u = x ∂x + y ∂y

∂v = y(x2 + y2)−1/2(y ∂x − x ∂y).

5. The Levi-Civita connection in Fermi coordinates

Using the coordinates (u, v) ∈ R2 with metric tensor g = cosh2(v)du2+
dv2 as above, we compute the Christoffel symbols of the Levi-Civita
connection ∇. Since u, v are coordinates, the corresponding vector
fields ∂u, ∂v commute: [∂u, ∂v] = 0 and since ∇ has zero torsion,

∇u∂v = ∇v∂u.

Since all the inner products of this basis are constant except for g(∂u, ∂u),

0 = ∂ug(∂u, ∂v) = ∂vg(∂u, ∂v) = ∂ug(∂v, ∂v) = ∂vg(∂v, ∂v)

and g is parallel with respect to ∇, implies

∇v∂v = 0
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and differentiating g(∂u, ∂u) = cosh2(v) yields

∇u∂v = ∇v∂u = tanh(v)∂u

∇u∂u = sinh(v) cosh(v)∂v

One can modify this coordinate basis to an orhonormal basis by re-
placing ∂u by

U := sech(v)∂u,

in which the covariant derivatives are:

∇U(U) = −tanh(v)∂v, ∇v(U) = 0,

∇U(∂v) = tanh(v)U, ∇v(∂v) = 0.

6. Geodesic curvature in Fermi coordinates

Let γ(t) =
(
u(t), v(t)

)
be a curve. Its velocity is:

γ′(t) = u′(t)∂u + v′(t)∂v

and the square of its speed is:(
ds

dt

)2

= u′(t) cosh2
(
v(t)

)
+ v′(t)2

Its acceleration is:

D

dt
γ′(t) =

(
u′′(t) + tanh

(
v(t))u′(t)v′(t)

)
∂u

+

(
v′′(t) + tanh

(
v(t))u′(t)v′(t)− u′(t)2 cosh

(
v(t)

)
sinh

(
v(t)

))
∂u


