THE LEVI-CIVITA CONNECTION FOR THE
POINCARE METRIC

We denote complex numbers z = x + yi € C where z,y € R.
Let H? denote the upper half-plane

{z +iylr,y e R, y >0}
with the Poincaré metric:

|d2|”

We compute the Levi-Civita connection V with respect to several dif-
ferent frames.

1. THE USUAL COORDINATE SYSTEM ON H2

Let 0,0, be the coordinate vector fields, so that:

(1) 9(0:,0:) = 9(9y,0,) =y~
(2) 9(0x,0y) = g(0y, 0) = 0.
The vector fields

§:=y 0,

n:=y 9,

define an orthonormal frame field.

Theorem. In terms of the coordinate frame, the Levi-Civita connection
s given by:

(3) V.0, =y '9,

(4) V.0, =—y 10,
(5) Vy0r =~y 10,
(6) V0, = _y_lay
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In terms of the orthonormal frame, the Levi-Civita connection is given
by:

Vel =1
Ven = —¢
V,E =0
V,n=20

Proof. Orthonormality implies g(y0,,y0,) = 1 is constant, whence
0= 0y9(y0s, y0Oy)
=29(Vy(y0s), y0:)
= 2yg(Vy(y0:), Ox)
= 2y(9(0, 02) + yg(VyOu, Oz))
=2y(y~ +yg(V,0s),0,)

and

(7) g(vyaxa am) - _y—3‘
Differentiating the constant g(yd,,d,) with respect to x:
(8) 0 =20,9(V,0y, 0:)

whence

(9) 9(V 0, 8,) = 0.

Since V is symmetric,

(10) V.0, = V,0,.

Combining (9) with (10):
9(V20y,0,) = -y~

and combining with (8), yields (4). Applying (10) again yields (5).
Differentiating ¢(y0,, y0,) = 1 with respect to 0, yields:

(11) 9(V30:,0,) =0
Similarly, differentiating with respect to 0,;
(12) g(vxaxa a:r:) = y_S

which implies (3).
Differentiating ¢(y0,, y9,) = 0 with respect to 0, yields:

(13) 9(Vy0y,0;) =0
Similarly, 0 = 0,9(09,, 0,) implies;
(14) g(vyazn ay) - _y_?)
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which implies (6).
The routine calculations for the orthonormal frame are omitted. [

2. CONNECTION 1-FORM FOR ORTHONORMAL FRAME

Denote the coframe field dual to the orthonormal frame by:

£ = ydx
N = ydy.
The covariant differentials of the orthonormal frame are:
VE=n &
Vn= —£¢&

so the connection form is:
0 & 1 0 —1
e ) = el ]
3. GEODESIC CURVATURE OF A HYPERCYCLE

We use these to calculate the geodesic curvature of a hypercycle. The
positive imaginary axis (R, is a geodesic with endpoints 0,00. The
Euclidean rays from 0 subtending an angle 6 with ‘R, are hypercycles

re’ =r(cos(9) +isin(9))
= r( tanh(p) + isech(p))
at distance p from ‘R . The point x4 ¢ has coordinates

T = % = sinh(p).
The curve
H(t) = e'(wo+1i)
has velocity vector and speed, respectively:
F'(t) = €e'(xg0, + 0,)
= 2o + 1)

(15) 15" 01 = /1 + =3

We compute the accelaration of 4():

D
E Y (t> = vzo£+n<x0£ + 77)

= 917?)77 — o€
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Now reparametrize 7(t) by unit speed:

' (o + 1)

1
v(t) = Wi

and the geodesic curve is the tangential component of the acceleration:

D 1

E’Y(t) = Tr o (z5n — o)

which, since v(t) has constant speed, equals:

H __lzol
1+ xo
= sin(0)
= tanh(p)

|

Similarly the geodesic curvature of a metric circle of radius p equals
coth(p). To see this, use the Poincare unit disc model: for |z| < 1, the
metric tensor is:

Az
(A=)
and writing (hyperbolic polar coordinates)

z = ¢ tanh(p/2)

the metric tensor is ¢ = dp? + sinh®(p)d#?, with area form dA =
sinh?®(p)dp A df. Consider a disc D, with (hyperbolic) radius p. Then
its circumference equals 27 sinh(p) and its area 2m(cosh(p) — 1. Let
kg be the geodesic curvature of the metric circle 9D,. Applying the
Gauss-Bonnet theorem

2 (X) = /ZKdA + fgz kqds

to 0 = D, obtaining:
21 = —2m(cosh(p) — 1) + k, (27 sinh(p)),

that is,
k, = coth(p)

as desired.
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4. FERMI COORDINATES AROUND A GEODESIC

Another convenient coordinate system begins with a geodesic and
considers the family of geodesics orthogonal to this one. Let u de-
note the parameter along the geodesic, and v the parameter along the
perpendiculars:

x = e" tanh(v)
y = e"sech(v).
Then sinh(v) = z/y and |z| = 2% + y* = € and u = }log(z? + y?).
Writing
z = €"(tanh(v) + i sech(v))
dz = z(du + isech(v)dv)
|dz|* = |2|* (du® + sech®(v)dv?)
with metric tensor
|d=|”
Y2
The coordinate 1-forms are:

— cosh?(v)du?® + dv?.

du = (2* + y*) Nz dz +y dy)

dv = (2* +y*) "2 (y do — x/y dy)
and dual coodinate vector fields:

Ou= 0y +y 0,

0, = y(a* + )2y 0. — x 9,).

5. THE LEVI-CIVITA CONNECTION IN FFERMI COORDINATES

Using the coordinates (u,v) € R? with metric tensor g = cosh?(v)du?+
dv? as above, we compute the Christoffel symbols of the Levi-Civita
connection V. Since u,v are coordinates, the corresponding vector
fields 0y, 0, commute: [0,,d,] = 0 and since V has zero torsion,

Vu0y = V,,0y.
Since all the inner products of this basis are constant except for g(9,, d,),
0 = 0,9(0y, OV) = 0yg(0y, OV) = 0yg(Dy, OV) = 0,yg(0y, OV)
and g is parallel with respect to V, implies

V0, =0
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and differentiating ¢(9,,9,) = cosh?(v) yields
V.0, = V,0, = tanh(v)d,
V.0, = sinh(v) cosh(v)0,
One can modify this coordinate basis to an orhonormal basis by re-
placing 0, by
U := sech(v)0,,
in which the covariant derivatives are:
Vu(U) = —tanh(v)d,, V,(U) =0,
Vu(0,) = tanh(v)U, V,(9,)=0.

6. GEODESIC CURVATURE IN FERMI COORDINATES
Let v(t) = (u(t),v(t)) be a curve. Its velocity is:
V(1) = ' (£)0y + v'(£)0y
and the square of its speed is:
ds\?
(%) = /(t) cosh? (v(t)) + v/ (t)?

Its acceleration is:

%7’(15) = (u"(t) + tanh (v(t))u'(t)vl(t)) Ou

- (v"(t) + tanh (v(t))u'(£)v'(t) — o' (t)? cosh (v(t)) sinh (v(t))) Oy



