

THE LEVI-CIVITA CONNECTION FOR THE POINCARÉ METRIC

We denote complex numbers $z = x + yi \in \mathbb{C}$ where $x, y \in \mathbb{R}$.

Let \mathbb{H}^2 denote the upper half-plane

$$\{x + iy \mid x, y \in \mathbb{R}, y > 0\}$$

with the *Poincaré metric*:

$$g = \frac{|dz|^2}{y^2}$$

We compute the Levi-Civita connection ∇ with respect to several different frames.

1. THE USUAL COORDINATE SYSTEM ON \mathbb{H}^2

Let ∂_x, ∂_y be the coordinate vector fields, so that:

$$\begin{aligned} (1) \quad g(\partial_x, \partial_x) &= g(\partial_y, \partial_y) = y^{-1} \\ (2) \quad g(\partial_x, \partial_y) &= g(\partial_y, \partial_x) = 0. \end{aligned}$$

The vector fields

$$\begin{aligned} \xi &:= y^{-1}\partial_x \\ \eta &:= y^{-1}\partial_y \end{aligned}$$

define an orthonormal frame field.

Theorem. *In terms of the coordinate frame, the Levi-Civita connection is given by:*

$$(3) \quad \nabla_x \partial_x = y^{-1} \partial_y$$

$$(4) \quad \nabla_x \partial_y = -y^{-1} \partial_x$$

$$(5) \quad \nabla_y \partial_x = -y^{-1} \partial_x$$

$$(6) \quad \nabla_y \partial_y = -y^{-1} \partial_y$$

In terms of the orthonormal frame, the Levi-Civita connection is given by:

$$\begin{aligned}\nabla_\xi\xi &= \eta \\ \nabla_\xi\eta &= -\xi \\ \nabla_\eta\xi &= 0 \\ \nabla_\eta\eta &= 0\end{aligned}$$

Proof. Orthonormality implies $g(y\partial_x, y\partial_x) = 1$ is constant, whence

$$\begin{aligned}0 &= \partial_y g(y\partial_x, y\partial_x) \\ &= 2g(\nabla_y(y\partial_x), y\partial_x) \\ &= 2yg(\nabla_y(y\partial_x), \partial_x) \\ &= 2y(g(\partial_x, \partial_x) + yg(\nabla_y\partial_x, \partial_x)) \\ &= 2y(y^{-1} + yg(\nabla_y\partial_x), \partial_x)\end{aligned}$$

and

$$(7) \quad g(\nabla_y\partial_x, \partial_x) = -y^{-3}.$$

Differentiating the constant $g(y\partial_y, \partial_y)$ with respect to x :

$$(8) \quad 0 = 2\partial_x g(\nabla_x\partial_y, \partial_x)$$

whence

$$(9) \quad g(\nabla_y\partial_x, \partial_x) = 0.$$

Since ∇ is symmetric,

$$(10) \quad \nabla_x\partial_y = \nabla_y\partial_x.$$

Combining (9) with (10):

$$g(\nabla_x\partial_y, \partial_y) = -y^{-3}$$

and combining with (8), yields (4). Applying (10) again yields (5).

Differentiating $g(y\partial_x, y\partial_x) = 1$ with respect to ∂_x yields:

$$(11) \quad g(\nabla_x\partial_x, \partial_x) = 0$$

Similarly, differentiating with respect to ∂_y ;

$$(12) \quad g(\nabla_x\partial_x, \partial_x) = y^{-3}$$

which implies (3).

Differentiating $g(y\partial_x, y\partial_y) = 0$ with respect to ∂_y yields:

$$(13) \quad g(\nabla_y\partial_y, \partial_x) = 0$$

Similarly, $0 = \partial_y g(\partial_y, \partial_y)$ implies;

$$(14) \quad g(\nabla_y\partial_y, \partial_y) = -y^{-3}$$

which implies (6).

The routine calculations for the orthonormal frame are omitted. \square

2. CONNECTION 1-FORM FOR ORTHONORMAL FRAME

Denote the coframe field dual to the orthonormal frame by:

$$\begin{aligned}\xi^* &:= ydx \\ \eta^* &:= ydy.\end{aligned}$$

The covariant differentials of the orthonormal frame are:

$$\begin{aligned}\nabla\xi &= \eta \quad \xi^* \\ \nabla\eta &= -\xi \quad \xi^*\end{aligned}$$

so the connection form is:

$$\begin{bmatrix} 0 & \xi^* \\ -\xi^* & 0 \end{bmatrix} = -y^{-1}dx \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

3. GEODESIC CURVATURE OF A HYPERCYCLE

We use these to calculate the geodesic curvature of a hypercycle. The positive imaginary axis $i\mathbb{R}_+$ is a geodesic with endpoints $0, \infty$. The Euclidean rays from 0 subtending an angle θ with $i\mathbb{R}_+$ are hypercycles

$$\begin{aligned}re^{i\theta} &= r(\cos(\theta) + i\sin(\theta)) \\ &= r(\tanh(\rho) + i\operatorname{sech}(\rho))\end{aligned}$$

at distance ρ from $i\mathbb{R}_+$. The point $x_0 + i$ has coordinates

$$x_0 = \frac{\tanh(\rho)}{\operatorname{sech}(\rho)} = \sinh(\rho).$$

The curve

$$\tilde{\gamma}(t) := e^t(x_0 + i)$$

has velocity vector and speed, respectively:

$$\begin{aligned}\tilde{\gamma}'(t) &:= e^t(x_0\partial_x + \partial_y) \\ &= x_0\xi + \eta \\ (15) \quad \|\tilde{\gamma}'(t)\| &= \sqrt{1 + x_0^2}\end{aligned}$$

We compute the acceleration of $\tilde{\gamma}(t)$:

$$\begin{aligned}\frac{D}{dt}\tilde{\gamma}(t) &= \nabla_{x_0\xi + \eta}(x_0\xi + \eta) \\ &= x_0^2\eta - x_0\xi\end{aligned}$$

Now reparametrize $\tilde{\gamma}(t)$ by unit speed:

$$\gamma(t) := \frac{1}{\sqrt{1+x_0}} e^t (x_0 + i)$$

and the geodesic curve is the tangential component of the acceleration:

$$\frac{D}{dt} \gamma(t) = \frac{1}{1+x_0} (x_0^2 \eta - x_0 \xi)$$

which, since $\gamma(t)$ has constant speed, equals:

$$\begin{aligned} \left\| \frac{D}{dt} \gamma(t) \right\| &= \frac{|x_0|}{\sqrt{1+x_0^2}} \\ &= \sin(\theta) \\ &= \tanh(\rho) \end{aligned}$$

Similarly the geodesic curvature of a metric circle of radius ρ equals $\coth(\rho)$. To see this, use the Poincare unit disc model: for $|z| < 1$, the metric tensor is:

$$g := \frac{4|dz|^2}{(1-|z|^2)^2}$$

and writing (hyperbolic polar coordinates)

$$z = e^{i\theta} \tanh(\rho/2)$$

the metric tensor is $g = d\rho^2 + \sinh^2(\rho)d\theta^2$, with area form $dA = \sinh^2(\rho)d\rho \wedge d\theta$. Consider a disc D_ρ with (hyperbolic) radius ρ . Then its circumference equals $2\pi \sinh(\rho)$ and its area $2\pi(\cosh(\rho) - 1)$. Let k_g be the geodesic curvature of the metric circle ∂D_ρ . Applying the Gauss-Bonnet theorem

$$2\pi\chi(\Sigma) = \int_{\Sigma} K dA + \oint_{\partial\Sigma} k_g ds$$

to $\sigma = D_\rho$ obtaining:

$$2\pi = -2\pi(\cosh(\rho) - 1) + k_g(2\pi \sinh(\rho)),$$

that is,

$$k_g = \coth(\rho)$$

as desired.

4. FERMI COORDINATES AROUND A GEODESIC

Another convenient coordinate system begins with a geodesic and considers the family of geodesics orthogonal to this one. Let u denote the parameter along the geodesic, and v the parameter along the perpendiculars:

$$\begin{aligned} x &= e^u \tanh(v) \\ y &= e^u \operatorname{sech}(v). \end{aligned}$$

Then $\sinh(v) = x/y$ and $|z| = x^2 + y^2 = e^{2u}$ and $u = \frac{1}{2} \log(x^2 + y^2)$. Writing

$$\begin{aligned} z &= e^u(\tanh(v) + i \operatorname{sech}(v)) \\ dz &= z(du + i \operatorname{sech}(v)dv) \\ |dz|^2 &= |z|^2(du^2 + \operatorname{sech}^2(v)dv^2) \end{aligned}$$

with metric tensor

$$g = \frac{|dz|^2}{y^2} = \cosh^2(v)du^2 + dv^2.$$

The coordinate 1-forms are:

$$\begin{aligned} du &= (x^2 + y^2)^{-1}(x \, dx + y \, dy) \\ dv &= (x^2 + y^2)^{-1/2}(y \, dx - x/y \, dy) \end{aligned}$$

and dual coordinate vector fields:

$$\begin{aligned} \partial_u &= x \, \partial_x + y \, \partial_y \\ \partial_v &= y(x^2 + y^2)^{-1/2}(y \, \partial_x - x \, \partial_y). \end{aligned}$$

5. THE LEVI-CIVITA CONNECTION IN FERMI COORDINATES

Using the coordinates $(u, v) \in \mathbb{R}^2$ with metric tensor $g = \cosh^2(v)du^2 + dv^2$ as above, we compute the Christoffel symbols of the Levi-Civita connection ∇ . Since u, v are coordinates, the corresponding vector fields ∂_u, ∂_v commute: $[\partial_u, \partial_v] = 0$ and since ∇ has zero torsion,

$$\nabla_u \partial_v = \nabla_v \partial_u.$$

Since all the inner products of this basis are constant except for $g(\partial_u, \partial_u)$,

$$0 = \partial_u g(\partial_u, \partial_v) = \partial_v g(\partial_u, \partial_v) = \partial_u g(\partial_v, \partial_v) = \partial_v g(\partial_v, \partial_v)$$

and g is parallel with respect to ∇ , implies

$$\nabla_v \partial_v = 0$$

and differentiating $g(\partial_u, \partial_u) = \cosh^2(v)$ yields

$$\begin{aligned}\nabla_u \partial_v &= \nabla_v \partial_u = \tanh(v) \partial_u \\ \nabla_u \partial_u &= \sinh(v) \cosh(v) \partial_v\end{aligned}$$

One can modify this coordinate basis to an orthonormal basis by replacing ∂_u by

$$U := \operatorname{sech}(v) \partial_u,$$

in which the covariant derivatives are:

$$\begin{aligned}\nabla_U(U) &= -\tanh(v) \partial_v, \quad \nabla_v(U) = 0, \\ \nabla_U(\partial_v) &= \tanh(v) U, \quad \nabla_v(\partial_v) = 0.\end{aligned}$$

6. GEODESIC CURVATURE IN FERMI COORDINATES

Let $\gamma(t) = (u(t), v(t))$ be a curve. Its velocity is:

$$\gamma'(t) = u'(t) \partial_u + v'(t) \partial_v$$

and the square of its speed is:

$$\left(\frac{ds}{dt} \right)^2 = u'(t) \cosh^2(v(t)) + v'(t)^2$$

Its acceleration is:

$$\begin{aligned}\frac{D}{dt} \gamma'(t) &= \left(u''(t) + \tanh(v(t)) u'(t) v'(t) \right) \partial_u \\ &\quad + \left(v''(t) + \tanh(v(t)) u'(t) v'(t) - u'(t)^2 \cosh(v(t)) \sinh(v(t)) \right) \partial_v\end{aligned}$$