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INTRODUCTION

Toshiyuki Kobayashi has made fundamental contributions to the
study of proper transformation groups. Informally speaking, proper-
ness is a uniformity condition on a group action which ensures good
behavior of the quotient space. When the group is equipped with the
discrete topology, this is the familiar notion of a properly discontinuous
action:

A group action G ~ X is properly discontinous if for
compact subsets Ki, Ky C X, for only finitely many g €
G is K; N gK5 nonempty.
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When the action is free, then this implies that the quotient map X —
G\X is a covering space. However, even if the G enjoys the discrete
topology as a subgroup of the homeomorphism group Homeo(X), it
need not act properly discontinuously.

Much of Kobayashi’s work concerns groups of isometries of pseudo-
Riemannian structures, in which case the quotient G\ X itself has a
pseudo-Riemannian structure for whic X — G\ X is a local isometry.
A more extensive survey of this work can be found in Constantine [8]
and Kobayashi’s papers [32, 34] to which we refer for details. We
describe how some of the original insights of Kobayashi in this subject
have led to major developments in differential geometry and Lie theory,
having deep inter-relationships with other fields of mathematics.

1. HOMOGENEOUS SPACES AND BIQUOTIENTS

Biquotients I'\G/ K, where G is a Lie group, I' < G is a discrete sub-
group and K < G is a compact subgroup, arise as fundamental objects
in many mathematical contexts. When I' is torsionfree, and K is the
maximal compact subgroup, then I'\G/K is a manifold with a locally
symmetric complete Riemannian metric. In his seminal paper [5], A.
Borel showed that every semisimple Lie group G admits such a com-
pact biquotient, which is a called a compact Clifford-Klein form. This
is equivalent to I' < G being a cocompact (or uniform) lattice.

It is natural to ask whether such manifolds exist when K is replaced
by a closed subgroup H < G, which is not necessarily compact. A
basic example occurs with de Sitter space, which can be defined as the
quotient

ds? .= 0(2,1)/0(1,1).

(That is, G = O(2,1) and H = O(1,1).) This identifies with the one-
sheeted hyperboloid x*+1y* — 2% = 1, where the defining quadratic form
for R>! is

Q($7 Y, Z) = :CQ + y2 - 227
and the stabilizer of (1,0, 0) identifies with O(1, 1). Calabi and Markus [7]
showed that no if I' < G is a subgroup such that I'\G/H is a manifold,
then I' must be finite.

This markedly contrasts the hyperbolic surfaces I'\G/K. The maxi-
mal compact subgroup K of O(2,1) equals O(2) x O(1), the symmetric
space G/ K identifies with the hyperbolic plane (one component of the
two-sheeted hyperboloid defined by 22+y*—2? = —1). Then many dis-
crete subgroups I' < (G exist, for example, representing all hyperbolic
surfaces, including closed surfaces of genus > 1.
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2. PROPER ACTIONS

In this section we briefly review the theory of proper actions, to
describe conditions which provide Hausdorff quotient space of discrete
group actions.

2.1. Proper actions, fibrations, and covering spaces. Let X, Y
be locally compact Hausdorff spaces. We use the notation that A cC B
means “A is a compact subset of B.” Recall that a continuous map

X Lvis proper if VK CC Y, the preimage f~'!K cCc X. If G is a
locally compact topological group acting on X, then the action is said
to be proper if and only if the corresponding mapping

Gx X —XxX
(g,l’)'—>(g$,37)

is proper. What this means is that “going to infinity” in the orbits of
G implies “going to infinity (uniformly) in G.” This global uniformity
condition has many consequences:

e The quotient G\ X is Hausdorff;

e Every orbit is closed;

e (G is closed in the group Homeo(X') comprising homeomorphisms

X — X, given the compact-opern topology;
o If G acts freely, the quotient map X — G\ X is a fibration.

This notion was introduced by Palais [41] to study group actions whose
quotients have good local behavior. In particular he investigates, when
the action possesses slices, that is, cross-sections S — X which are
left-inverses to X — G\ X: points of S represent uniquely the G-orbits
in X.

When G is discrete, this is the usual notion of “properly disconti-
nuity,” and the quotient map is a branched covering space (a covering
space if the action is free). The terminology has evolved somewhat un-
fortunately and errors in the literature abound. Sometimes “properly
discontinuous” is called “totally discontinuous.” Sometimes the term
“discontinuous” is used for the weaker notion of wandering: An action
of G on X is said to be wandering if every point z € X has an open
neighborhood U such that the set of ¢ € G for which g(U) NU # ()
is finite. This condition is not strong enough to imply that the quo-
tient X /G is Hausdorff. Indeed, Wolf [48, 47] uses the term “properly
discontinuous” when he really means “wandering”. Sometimes “wan-
dering” is called “weakly proper,” or more suggestively, locally proper.
Kulkarni [35] suggests that “properly discontinuous” really should be
“discretely proper” since it refers to a proper action when G is given
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the discrete topology. (This also avoids the term “discontinuous” which
I find confusing since all the mappings involved are continuous map-
pings.) While the quotient by a proper action is Hausdorff (7%), the
quotient by a wandering action is only 7' — points in G\ X are closed
subsets, but may not have disjoint open neighborhoods. This phenom-
enon appears for the basic example in §2.2.

It is easy to see that a transitive action of G on X is proper <= the
stablizer subgroup

Stab(p) :={g € G | g(p) = p}

is compact for some (and hence every) p € X.

2.2. The basic example. Here is a basic example of a linear action
of the additive group R which is not proper. In a certain sense, it arises
for any non-proper action of R.

Namely, consider the partially closed quadrant

W= {(z,y) € R* [ z,y > 0} \ {(0,0)},
its two boundary components
X =R, x{0}, Y :={0}x R,
and its interior
int(W) =R, x R,.

The one-parameter group

t
G= {gt = {% eqt} ,t € R}.

acts freely on W, XY and int(W). Furthermore G acts properly on
X, Y, int(W) but not on W.
To see this, consider € > 0 and the compact subsets of W:
X :={1} x [0, ¢
Y= 0.4 x {1}
Then (1,€) s (e,1) <= t = log(e). As € — 0, the time interval
t /' 4oo. In particular

K=XuUY.ccW
but
{9€GgKNK #0}

is a noncompact subset of G. In the quotient W/G, points on the image
of X and the image of Y cannot be separated by open sets. Compare
Figure 1.
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FIGURE 1. A basic example of a non-proper linear action.

This general picture appears in any non-proper group action. Namely,
if G is a group acting on a space X and the action is not proper, then
sequences Tg, 1, Lo, T3, - € X and g1, go, g3, - - - € G exist, with

gn(IO) = Tn
such that

lim z,, =: T
n—oo

exists, but the sequence g, diverges. In the case of a flow, this is the
above picture, where it takes longer and longer to get from near z, to
near xo. Conversely if the action is proper, for every divergent sequence
gn € G and xy € X, the sequence g, (z) € X diverges.

This basic example is used in Goldman-Labourie-Margulis [18] to
show that an affine deformation of a hyperbolic surface > gives rise to
a function on probability measures invariant under the geodesic flow of
Y. The positivity of this function is equivalent to the properness of the
deformation. In particular, the presence of this basic example gives a
probability measure on which this function vanishes. Compare also [9]
and the references given there.

3. PSEUDO-RIEMANNIAN SYMMETRIC SPACES

A classic theorem in differential geometry is that a compact Rie-
mannian manifold (M, g) is geodesically complete. If (M, g) is locally
homogeneous, then M is the quotient of a model space X by a discrete
subgroup I' < Isom(X), which necessarily acts properly.



6 W. GOLDMAN

However, the extension of this circle of ideas to the case when g is
indefinite is highly nontrivial, interesting and still mysterious.

3.1. Calabi-Markus phenomenon. Calabi and Markus [7] showed
that a complete de Sitter manifold cannot be compact. Specifically,
they show every discrete subgroup of SO(p + 1, 1) acting properly on
dS* = SO(k + 1,1)/SO(p, 1) must be finite..

The proof can be understand by the following simple idea. Suppose
that X = dS? be 2-dimensional de Sitter space; as a homogenous space
it identifies with SO(2,1)/SO(1,1), and X ~ S! x R. In projective
space it identifies with the quadric

X2 Y P4 A ZP+WH =0
in homogeneous coordinates which in turn identifies with the hyperbolic

paraboloid (or saddle) defined by x = y*> — 2% in R? arising from the
affine chart

R3 < P3
x—1
(2,9.2) — || 7
r+1

The flow
(,y,2) N (z,cosh(t)y + sinh(t)z, sinh(t)y + cosh(t)z)

extends to a one-parameter subgroup of orthogonal matrices, preserves
the saddle, and may be seen more vividly using a simple change of
linear coordinates (y, z) = ((u +v)/2, (v— u)/2) (where u = y — z and
v=y+2)):
(u,v) — (e "u, ev),

the basic example of a non-proper R-action. This is the simplest ex-
ample of the Calabi-Markus phenomenon. (Compare Figure 2.)

If M =T\ X is a complete de Sitter manifold, then I" must necessarily
be infinite and discrete. Thus 3y € I' generating a discrete cyclic
subgroup (v) which acts properly on X.

3.2. Compact pseudo-Riemannian space forms. When G/H =
SO(p+1,4q)/SO(p, q), then G admits an infinite discrete group I' acting
properly on G/H <= p < ¢ (the Calabi-Markus phenomenon). Fur-
thermore if I can be chosen so that I'\G/H is compact, and pg > 0,
then ¢ must be even (we take p < ¢). He found explicit examples for
all SO(1,2n), SO(3,4n) and SO(7,8), Kobayashi has conjectured that
these are the only possible values of (p, q).
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FiGURE 2. An improper saddle point arising from an
isometric flow on dS?.

3.3. Nilpotent groups: Lipsman’s conjecture. Opposite from re-
ductive groups are nilpotent groups, where analogous questions were
studied by Ron Lipsman [37], who proposed the following conjecture:

If G is a 1-connected nilpotent Lie group, where L C G D

H are closed subgroups, then L acts freely on X = G/H

—> L acts properly on X.
Lipsman’s paper was inspired by Kobayashi’s paper [27], which he cites
as a “basic paper”, in which Kobayashi discovered the strong parallels
between the problem of proving the quotient X/L is a manifold, and
passing from L to its Zariski closure in G (when G is an algebraic
group). This latter construction is especially strong when G is a 1-
connected nilpotent Lie group, which inherits an algebraic structure
from a faithful unipotent representation. In this case, the Zariski clo-
sure of a discrete subgroup L is the Malcev completion, which can be
carried out purely in terms of the group theory of L (compare the brief
discussion in [16], §8.6).

The compact intersection property, from [27] is the statement that
each Stab(p) CC G, and is equivalent to properness for transitive ac-
tions. The triviality of compact unipotent groups provides evidence for
Lipsman’s conjecture.

Nasrin [38] proved Lipsman’s conjecture if G is 2-step nilpotent,
and Baklouti [2] and Nasrin in 2007 extended this for 3-step nilpotent
groups. However, in 2005 Yoshino [49] disproved Lipsman’s conjecture
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with a 4-step nilpotent group G containing L = R? and X ~ R? a
nilmanifold quotient of G such that L:

e [ acts freely on X;
e All L-orbits are closed;
e [\ X is not Hausdorff.

Kobayashi and Nasrin [33] completely determine the deformation space
of proper actions of the free abelian group Z* on a k + 1-dimensional
affine space by a 2k+ 1-dimensional 2-step nilpotent group (the Heisen-
berg group). They prove the suggestive fact that every such proper
action extends to an action of R¥ D Z*, and conclude with explicitly
showing the space of such proper actions contains on open subset of
dimension 2 if:

2 k=1
2k —2 if k> 11is odd
2k —1 if k> 11is even

However, the situation is much more subtle and complicated when
the groups are reductive, involving the development of new machinery.
This sheds light on the extension of the Calabi-Markus phenomenon
and the classification of Clifford-Klein forms for reductive homogeneous
spaces.

4. PROPERNESS CRITERIA

The asymptotics of a semisimple Lie group are governed by Cartan’s
KAK-decomposition, where K < G is a maximal compact and A is
an R-split torus: going to co in G means going to oo in A. Using this
paradigm, Kobayashi [30] found an elegant properness criterion, which
was obtained independently by Yves Benoist [3],§3.1 about the same
time. This criterion relies on Kobayashi’s idea in the earlier properness
criterion from [26].

4.1. Properness and similarity. We assume that G is a locally com-
pact group, and L and H are subsets. If S CC G and U C G, think of
the product

SUS = {s1usy | $1,80 € S,u € U}

as a “compact thickening” of an arbitrary subset U C G, which will be
closed if U is closed, and will be compact if U CC G.
Say that L m H if and only if VS CC G, the closure

L N SHS cCc G,
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and L ~ H (L and H are similar in G) if and only if 35 CC G such
that
L cSHS and H C SLS.

Clearly similarity is an equivalence relation. Furthermore ~ and rh are
related by:

L~H < VM CG, LM< HhM

For example, in the basic case when G is a vector space R" and
L,H < G are vector subspaces, then L M H <= LN H = {0} and
L~H<+= L=H.

The relations rh and ~ are especially useful because, in the reductive
case, they behave well in reducing to the maximal split torus A. Let

G A
kiaks — a

be the retraction (Cartan projection) G — A. That these relations
are valid for subsets which are not necessarily subgroups (such as the
Cartan projections v(L) provides extra flexibility letting them to be a
powerful tool in analyzing proper group actions:

Proposition 4.1. (Benoist [3], Kobayashi [30]) If K, L < G, then
e H~L inG <= v(H)~v(L) in A;
e HM L in G < v(H) hv(L) in A.

This A-reduction is a key tool in the extensions of Calabi-Markus [7]
by Wolf [48, 47] Kulkarni [35] and Kobayashi [26]:

Proposition 4.2. Suppose H < G are real reductive Lie groups of
respective R-ranks ((H) < ((H). Then {(H) = ¢(G) if and only if AT <
G which is infinite and acts properly on G/H.

In a similar direction, Benoist [3] proved that, for a reductive ho-
mogeneous space G/H, a discrete two-generator free subgroup I' < G
exists which acts properly on G/H only if ¢{(G) > ((H).

4.2. Compact Clifford-Klein forms. A natural question is whether
for a given homogeneous space G/H a discrete subgroup I' < G exists
for which the action is proper, and the quotient I'\G/H is compact.
This is an extremely difficult and intricate question upon Kobayashi
has worked. This question brings in many tools from group theory and
topology.

Some of the earliest results follow from the techniques described
above. For example, Benoist [3] proved that SL(2n + 1,R)/SL(2n, R)
has no compact Clifford-Klein form, and Oh-Witte [39] proved that
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for G = SL(3,R), then G/H has a compact quotient unless either
H or G/H is compact. (Compare also lozzi-Witte [17].) In another
paper [40], they conjecture that SO(2,2m + 1)/SU(1, m) has no com-
pact Clifford-Klein forms. This implies that SO(2,2m + 1) has no
interesting compact biquotients whatsoever. They give many exam-
ples for SO(2,2m), including the observation of Kulkarni [35] that
even-dimensional compact R-hyperbolic manifolds give rise to com-
pact Clifford-Klein forms of SO(2,2m)/H for many closed subgroups
H < SO(2,2m).

Of course Propostion 4.2 gives necessary conditions but gives no
information on compactness. Given a reductive group G, define the
noncompactness dimension d(G) as the dimension of G/ K, where K C
C (G'is amaximal compact subgroup. In particular if I' < G is a discrete
torsionfree subgroup, then its cohomological dimension cd(I") satisfies:

(D) < dim(T\G/K) = dim(G/K) =: d(G)

with equality holding if I'\G/K is compact.
The following theorem is proved in Kobayashi [26]:

Theorem 4.3. Let G/H be a reductive homogeneous space. If IH' < G
such that H ~ H' and d(H') > d(H), then G/H admits no compact
Clifford-Klein form.

This generalizes Kulkarni’s generalization [35] of Calabi-Markus [7]
for SO(p+1,4)/SO(p, q). See Constantine [8] for more information on
this fascinating question.

4.3. Standard quotients. If G acts properly on X, then obviously
any closed subgroup (such a discrete subgroup) also acts properly on
X. For example, the group of isometries of a complete Riemannian
manifold (X, g) acts properly on X, so every discrete subgroup I' of
Isom(X, g) acts properly on X. If (X, g) is a homogeneous Riemannian
manifold, (that is, Isom(X, g) acts transitively on X), then the quotient
"\ X is a Clifford-Klein form of X.

However, for most homogeneous pseudo-Riemannian manifolds (X, g),
the transitive action of Isom(X, g) is not proper. Here is a general ap-
proach for constructing Clifford-Klein forms of X.

Suppose Isom(X, g) contains a closed subgroup G which does act
transitively and properly on X. Such a quotient I'\ X, where

I' < G <lIsom(X,g)

is a discrete subgroup, is called a standard quotient.
A basic question in this direction was conjectured by Kobayashi [26]:
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A reductive homogeneous space G/H admits a compact
Clifford-Klein form <= G/ H admits a compact standard
Clifford-Klein form.

The first examples of compact Lorentzian space forms of nonzero cur-
vature are due to Kulkarni and Raymond[36]. These are anti-de Sitter
3-manifolds which admit timelike Killing vector fields. One obtains
a Riemannian structure by combining the anti-de Sitter Lorentzian
structure with the timelike Killing vector field to form a homogeneous
Riemannian manifold. This homogeneous Riemannian manifold is one
of Thurston’s eight geometries[46] coming from a left-invariant Rie-
mannian structure on SL(2, R).

4.4. Nonstandard examples. The first examples of nonstandard Clifford-
Klein forms are due to the author [15] and Ghys [14], obtained by
continuously deforming standard structures. Later Salein [43] found
further examples which are not continuous deformations of standard
structures.

Anti de Sitter space AdS® has an alternate and suggestive descrip-
tion. The Lie group G = SL(2,R) has a bi-invariant Lorentzian metric
arising from the Killing form on its Lie algebra, The action of G x G
by left- and right- multiplications is isometric with respect to this
Lorentzian metric, and defines a model for AdS*, where AdS® < G and
Isom(AdS?) ++ G x G (up to local isomorphisms). Kulkarni and Ray-
mond [36] prove that if T" is a discrete group of isometries acting prop-
erly, then I' corresponds (up to interchanging the factors) the graph of

a homomorphism I' 2+ G. (Compare also Dumtrescu-Zeghib [12] and
Zeghib [50].) That is,

I' = graph(p) := {(v,p(7)) | v €T}

where the projection on the first factor of G x G is an embedding I' — G
onto a discrete subgroup of GG. The standard examples they construct
correspond to the case when p(I') < SO(2) < G. This is equivalent to
the AdS-manifold to possess a timelike Killing vector field.

For the nonstandard examples in [15], p takes values in a hyperbolic
one-parameter subgroup A < G. A key point is that these deformations
are geodesically complete, which follows from a general theorem of Klin-
gler [23] on completeness of closed Lorentz space forms. (Compare [16],
§8, for a general discussion of completeness of geometric structures.

In [15], T conjectured that the graph graph(p) acts properly when-
ever p is sufficiently near the trivial representation. This conjecture
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was proved in Kobayashi [31]. Furthermore he constructs similar ex-
amples in SO(2n,2)/SO(2n, 1), SU(2n,2)/Sp(n, 1), SO(4,3)/Go(R) and
SO(4,4)/Spin(4, 3).

Related results from Kobayashi [29] and [31] concern generalizing the
graph construction from SL(2,R) above to other groups. In particular
he also shows that the only examples of other simple Lie groups G for
which the construction with G x G is possible occur for G isomorphic
to SO(n, 1) or SU(n, 1).

AdS?-manifolds provide a wealth of new phenomena, which have been
the focus of much recent activity. The graph construction and the prop-
erties of surface group representations leads to many open questions,
relating the classical Clifford-Klein problem to what has been known
as “higher rank Teichmiiller theory” [6]. These ideas intimately relate
to Kobayashi’s work. Among some of these recent develpments are
Danciger-Guéritaud-Kassel [10], Deroin-Tholozan [11], Tholozan [44,
45], Gueritaud-Guichard-Kassel-Wienhard [19, 20], Gueritaud-Guichard-
Kassel-Wienhard-Wolff [21], Kapovich-Leeb-Porti [24]. In particular
properness of graph(p) corresponds to the representation p having the
property that it shortens all the simple geodesics on the hyperbolic
surface T'\H2. Compare also the brief discussion in [16], §15.3-5.

4.5. New directions. The recent paper of Kobayashi-Yoshino [34]
contains several striking results which deserve mention, indicating the
diversity of mathematical subjects related to this subject.

Recall that a symmetric space is a homogeneous space M = G/H
where H is a closed subgroup of the Lie group G and for which there
exists an automorphism o € Aut(G) of order two such that Go C G C
Go, where Go is the identity component of the closed subgroup Go.
If T'is a discrete subgroup of G, which acts properly discontinuously
and freely on the symmetric space G/H, then the double coset space
I'\G/H naturally inherits a manifold structure, and such a manifold is
said to be a Clifford-Klein form of G.

A particularly interesting example arises from the complex sphere:
the n-dimensional quadric 22 + ...22 = 1 in C", identifying with the
homogeneous space SO(n+1, C)/SO(n, C). Kobayashi and Yoshino [34]
proves that this symmetric space admits a compact Clifford-Klein form.

Another result I find particularly striking concerns tangential sym-
metric spaces, a generalization of Euclidean geometry. Associated to a
symmetric space G/H is another symmetric space, its tangential sym-
metric space Gg/Hy, where 6 is the involution fixing the Lie subalgebra
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b corresponding to H. The involution determines an eigenspace decom-
position g = h @ p and the tangential symmetric space is defined by:

Gy =Gxp,Hy =G

Kobayashi and Yoshino [34] characterize when the tangential sym-
metric space associated to SO(p, g¢+1)/SO(p, ¢) admits compact Clifford-
Klein form. They relate it to the Hurwitz-Radon number which arises
in the famous theorem of J. F. Adams [1] on the largest rank of a triv-
ial subbundle of the tangent bundle to the Euclidean sphere, as well
as problems in linear algebra on the factorization of quadratic forms
(Radon [42], Hurwitz [22], Eckmann [13]).

Finally, relating the topology and deformation theory of Clifford-
Klein forms to the function theory provides finer quantitative infor-
mation and more refined notions of proper actions. This ambitious
program has been started by Kassel and Kobayashi [25], and more
recent work by Benoist and Kobayashi [4].
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