ZBLMATH REVIEW OF “RANDOM UNITARY REPRESENTATIONS OF SURFACE GROUPS I: ASYMPTOTIC EXPANSIONS” BY MICHAEL MAGEE

WILLIAM M. GOLDMAN

In this very interesting paper, the author studies the moduli space of representations of the fundamental group \(\Gamma_g \) of a closed orientable surface of genus \(g > 1 \) into the special unitary group \(SU(n) \) where \(n > 1 \). In particular he considers random representations, with respect to a finite measure defined by the symplectic structure on the quotient

\[
\mathfrak{X}_{g,n} := \text{Hom}(\Gamma_g, SU(n))/\text{Inn}(SU(n)),
\]

studied by Narasimhan, Atiyah, Bott, the reviewer, Huebschmann and others. The paper concerns the asymptotic behavior as \(n \to \infty \).

The symplectic structure arises from combining the orientation of \(\Sigma_g \) and an \(\text{Ad} \)-invariant inner product \(B_n \) on the Lie algebra \(su(n) \). The bilinear form \(B_n \) is necessarily a multiple of the Killing form. The inner product \(B_n \) is normalized so that the corresponding bi-invariant Riemannian structure on \(SU(n) \) has Riemannian volume 1. With this normalization the total volume of \(\mathfrak{X}_{g,n} \) equals \(n\zeta(2g-2,n) \) where \(\zeta(2g-2,n) \) refers to the the \textit{Witten} \(\zeta \)-function:

\[
\zeta(s,n) := \sum_{(\rho,W) \in SU(n)} \frac{1}{(\dim W)^s},
\]

which was found by Witten and later rigorously proved by Sengupta.

The moduli space \(\mathfrak{X}_{g,n} \) carries natural functions given by the characters of representations applied to elements of \(\Gamma_g \), and is sometimes called the \textit{character variety}. For \(\gamma \in \Gamma_g \), the expected value \(E_{g,n}(\gamma) \) of the function \(\text{tr}_\gamma \) on \(\mathfrak{X}_{g,n} \) is bounded above in absolute value by \(n \), and this bound is attained when \(\gamma = e \in \Gamma_g \). For other elements \(\gamma \in \Gamma_g \), conjecturally

\[
\lim_{n \to \infty} \frac{E_{g,n}(\text{tr}_\gamma)}{n} = 0,
\]

and one corollary of the main result of this paper is the existence of this limit.

Date: wmg, August 13, 2024.
The main result is an asymptotic formula for this expected value in terms of a sequence $a_{-1}(\gamma), a_0(\gamma), a_1(\gamma), \cdots + a_M(\gamma) \in \mathbb{Q}$, for any $M \in \mathbb{N}$:

$$E_{g,n}(\text{tr} \gamma) = a_{-1}(\gamma)n + a_0(\gamma) + \frac{a_1(\gamma)}{n} + \cdots + \frac{a_{M-1}(\gamma)}{n^{M-1}} + O(n^{-M})$$

For example, when γ corresponds to a separating simple closed curve on Σ_2, it is proved that

$$E_{g,n}(\text{tr} \gamma) = \frac{2}{n} + \frac{5}{n^3} + O(n^{-5}).$$

More asymptotic formulas are proved in this paper in terms of the Witten zeta-function and unitary dual of $\text{SU}(n)$. Every irreducible $\text{SU}(n)$-representation contributes to the expected values. The calculations heavily use all the machinery of representation theory of $\text{SU}(n)$. Part of their technical difficulty is due to the growth of representations of $\text{SU}(n)$ as $n \nearrow +\infty$. The paper also describes closely related questions in mathematical physics, notably expected values of Wilson loops in 2D Yang-Mills theory.