

GEOMETRIC STRUCTURES ON MANIFOLDS: CORRECTIONS

WILLIAM M. GOLDMAN

I'd like to thank Toshiki Fujii of Osaka University for the following corrections.

1. TYPOS

1.1. Riemannian structure on S^2 . On p. 55, Exercise 3.2.7, the expression for the metric tensor should have $(x^2 + y^2 + 1)^2$ in the denominator, not just $(x^2 + y^2 + 1)^2$. The correct formula is:

$$\frac{dx^2 + dy^2 + (xdy - ydx)^2}{(x^2 + y^2 + 1)^2}$$

1.2. Number of affine Lie group structures on \mathbb{R}^2 . On p.121, Exercise 5.5.9, there are **six** structures on the Lie group $G \cong \mathbb{R}^2$, not five.

1.3. Equivalence of marked structures. On p.162, Definition 7.1.3 there is a typo:

“Say that two marked (G, X) -manifolds (M, f) and (M', f') are equivalent if and only if a (G, X) -isomorphism $M \xrightarrow{\phi} M'$ exists such that $\phi \circ f$ is diffeotopic to f' .”

The last “ f' ” was originally incorrectly “ ϕ ,” which makes no sense.

2. GRAFTING OF \mathbb{RP}^1 -MANIFOLDS

On p.122, Exercise 5.5.11, the fourth bullet item should be revised: “ M is obtained by grafting a homogeneous (affine) 1-manifold with some positive number of copies of the model \mathbb{RP}^1 -manifold M_0 (given by an isomorphism $M_0 \cong \mathbb{RP}^1$.”

Alternatively we could replace M_0 by its n -fold cover $n \geq 1$ which is obtained by grafting n copies of M_0 .

In general if M is a compact \mathbb{RP}^1 -manifold with parabolic holonomy Γ , the subset M_∞ of points in M which develop to the fixed point of Γ is a finite set. Let $n \geq 0$ denote its cardinality. If $n = 0$, then M comes from an affine (homogeneous) structure, and Γ is a cyclic

group of unipotent maps, and $M \cong \mathbb{R}/\mathbb{Z}$. If $n > 0$, choose a point $p \in M_\infty$. Then p has a neighborhood N (homeomorphic to an open interval) which is projectively equivalent to an affine line in \mathbb{RP}^1 ; writing \mathbb{RP}^1 as $\mathbb{R} \cup \{\infty\}$, the affine line N is just \mathbb{R} .

Let M_1 denote the closure of the complement $M \setminus N$; it again has parabolic holonomy but $(M_1)_\infty$ has cardinality $n - 1$. Furthermore M arises as an identification space of the disjoint union of the closure \bar{N} of N and M_1 , which equals the grafting of M_1 and \mathbb{RP}^1 . Proceeding by downwards induction on n , one sees that M is obtained by grafting \mathbb{R}/\mathbb{Z} with n -copies of the model structure \mathbb{RP}^1 . If $n > 0$, then this is the same as grafting \mathbb{R}/\mathbb{Z} with the n -fold covering space of $M_0 = \mathbb{RP}^1$.

3. CONFUSION IN § 6 ABOUT THE EMBEDDING $H^2 \hookrightarrow \mathbb{CP}^1$

The statement on p.131 before Theorem 6.1.2 is confusing. Furthermore, Theorem 6.1.2 is incorrectly stated that “every surface admits a \mathbb{CP}^1 -structure.” Since every \mathbb{CP}^1 -structure implies an orientation, we need to assume that the surface is orientable:

“every orientable surface admits a \mathbb{CP}^1 -structure.”

In the preceding discussion of the embedding of H^2 in \mathbb{CP}^1 , we really should use $\text{PSL}(2, \mathbb{R})$ rather than $\text{PGL}(2, \mathbb{R})$, since the orientation-reversing elements of $\text{PGL}(2, \mathbb{R})$ which reverse orientation on H^2 do not preserve the image of H^2 . Rather, they take the image of H^2 to its complement in \mathbb{CP}^1 . The correct display should be:

$$(H^2, \text{PSL}(2, \mathbb{R})) \longrightarrow (\mathbb{CP}^1, \text{PGL}(2, \mathbb{C}))$$