QUATERNIONS AND EUCLIDEAN 3-SPACE

The algebra of quaternions

Let \mathbb{H} denote a four-dimensional vector space with basis denoted $\mathbf{1}, \mathbf{i}, \mathbf{j}, \mathbf{k}$. Let \mathbb{H}_0 be the 3-dimensional vector space based on $\mathbf{i}, \mathbf{j}, \mathbf{k}$, regarded as vectors in \mathbb{R}^3 . The *bilinear* map

$$\mathbb{H} \times \mathbb{H} \longrightarrow \mathbb{H}$$

 $(\mathbf{q}_1, \mathbf{q}_2) \longmapsto \mathbf{q}_1 \mathbf{q}_2 := -(\mathbf{q}_1 \cdot \mathbf{q}_2) \mathbf{1} + (\mathbf{q}_1 \times \mathbf{q}_2)$

is called quaternion multiplication. Quaternion conjugation is the linear map:

$$\mathbb{H} \longrightarrow \mathbb{H}$$

$$\mathbf{q} := r\mathbf{1} + \mathbf{q}_0 \longmapsto \bar{\mathbf{q}} := r\mathbf{1} - \mathbf{q}_0$$

where $r \in \mathbb{R}$ is the real part $Re(\mathbf{q})$ and $\mathbf{q}_0 \in \mathbb{H}_0$ is the imaginary part $Im(\mathbf{q})$. Then

$$\mathbf{q}\bar{\mathbf{q}} = \|\mathbf{q}\|^2 = r^2 + \|\mathbf{q}_0\|^2 \ge 0$$

and equals zero if and only if $\mathbf{q} = 0$. Thus if $\mathbf{q} \in \mathbb{H}$ is nonzero, then it is multiplicatively invertible, with its inverse defined by:

$$\mathbf{q}^{-1} := \|qq\|^{-2}\bar{\mathbf{q}}$$

just like for complex numbers.

Thus \mathbb{H} is a division algebra (or noncommutative field.

The quaternions generalize complex numbers, built from the field \mathbb{R} of real numbers by adjoining one root **i** of the equation $z^2 = 1$. Note that by adjoining one $\sqrt{-1}$, there is automatically a second one, namely $-\sqrt{-1}$. This is a special case of the Fundamental Theorem of Algebra, that (counting mulitiplicities) a polynomial equation of degree n admits n complex roots.

However, there is no ordering on the field \mathbb{C} of complex numbers, that is, there is no meaningful sense of a "positive" or "negative" complex number. Thus there is no essential difference between \mathbf{i} and $-\mathbf{i}$. This algebraic symmetry gives rise to the field automorphism of complex conjugation:

$$\mathbb{C} \longrightarrow \mathbb{C}$$
$$z \longmapsto \bar{z}$$

Date: November 19, 2013.

The quaternions arise by adjoining three values of $\sqrt{-1}$, each in one of the coordinate directions of \mathbb{R}^3 . Thus we obtain 6 values of $\sqrt{-1}$, but in fact there are *infinitely many* square-roots of -1, one in every direction in \mathbb{R}^3 .

However, these basic quaternion don't commute, but rather anti-commute:

$$ij = -ji = k$$

 $jk = -kj = i$
 $ki = -ik = j$

Recall that (multi)linear maps of vector spaces can be uniquely determined by their values on a basis. These can be succinctly expressed in terms of *tables* as follows. Multiplication tables for the dot and cross products of vectors in $\mathbb{R}^3 = \mathbb{H}_0$ are:

•	i	j	$ \mathbf{k} $
i	1	0	0
j	0	1	0
k	0	0	1

×	i	j	k
i	0	k	$-\mathbf{j}$
j	$-\mathbf{k}$	0	i
k	j	-i	0

We can describe quaternion operations by their *tables* as they are multilinear. For example, quaternion conjugation is described in the basis $(1, \mathbf{i}, \mathbf{j}, \mathbf{k})$ as:

1	1	
i	-i	
j	-j	
k	-k	

Here is the multiplication table for quaternion multiplication:

	1	i	j	k
1	1	i	j	k
i	i	-1	k	$-\mathbf{j}$
$\parallel \mathbf{j} \parallel$	j	$-\mathbf{k}$	-1	i
\mathbf{k}	k	j	$-\mathbf{i}$	-1

A unit quaternion is a quaternion $\mathbf{q} \in \mathbb{H}$ such that $\|\mathbf{q}\| = 1$. Unit quaternions form the unit 3-sphere $S^3 \subset \mathbb{R}^4$. The imaginary unit quaternions \mathbb{H}_1 form a 2-sphere

$$S^2 \subset \mathbb{H}_0 = \mathbb{R}^3$$
.

Note that if $\mathbf{u} \in \mathbb{H}_1$ is an imaginary unit quaternion then $\mathbf{u}^2 = -1$. This gives the *infinitely many* square-roots of -1 promised earlier. Furthermore, since

$$\mathbf{u}^{n} = \begin{cases} 1 & \text{if } n \equiv 0 (\mathsf{mod} 4) \\ \mathbf{u} & \text{if } n \equiv 1 (\mathsf{mod} 4) \\ -1 & \text{if } n \equiv 2 (\mathsf{mod} 4) \\ -\mathbf{u} & \text{if } n \equiv 3 (\mathsf{mod} 4) \end{cases}$$

the usual calculation with power series implies:

$$\exp(\theta \mathbf{u}) = \sum_{n=0}^{\infty} \frac{1}{n!} (\theta \mathbf{u})^n$$
$$= \cos(\theta) \mathbf{1} + \sin(\theta) \mathbf{u}$$

just like $e^{i\theta} = \cos(\theta) + i\sin\theta$ for complex numbers.

Futhermore, if $\mathbf{v} \in \mathbb{H}_0$ represents a vector in \mathbb{R}^3 , then rotation in the unit vector \mathbf{u} by angle θ is:

$$\mathbf{v} \xrightarrow{\mathsf{Rot}_{\mathbf{u}}^{\theta}} \exp(\theta/2\mathbf{u}) \mathbf{v} \exp(-\theta/2\mathbf{u})$$

The usual Euclidean inner product on \mathbb{R}^4 is given in terms of quaternions $\mathbb{H} \cong \mathbb{R}^4$ by:

$$\mathbf{v} \cdot \mathbf{w} = \mathsf{Re}(\mathbf{v}\bar{\mathbf{w}}),$$

again, just like the analogous formula for complex numbers.

Remarks on 3×3 skew-symmetric matrices

The geometry of Euclidean 3-space \mathbb{R}^3 closely relates to the cross-product and skew-symmetric 3×3 -matrices. Namely, if

$$\mathbf{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k},$$

then the linear map

$$\mathbf{w} \longmapsto \mathbf{v} \times \mathbf{w}$$

is represented by the skew-symmetric matrix

$$S(\mathbf{v}) = S(x, y, z) := \begin{bmatrix} 0 & z & -y \\ -z & 0 & x \\ y & -x & 0 \end{bmatrix}$$

in the standard basis $(\mathbf{i}, \mathbf{j}, \mathbf{k})$. Clearly every 3×3 skew-symmetric matrix is S(x, y, z) for some $(x, y, z) \in \mathbb{R}^3$.

This establishes an isomorphism

$$\mathfrak{so}(3) \cong \mathbb{R}^3 \cong \mathbb{H}_0$$

where $\mathfrak{so}(n)$ denotes the space of $n \times n$ skew-symmetric matrices.

Notice that $\mathsf{Det} S(\mathbf{v}) = 0$ (this follows because $\mathbf{v} \in \mathsf{Ker} S(\mathbf{v})$ so that $S(\mathbf{v})$ is singular). Computing $S(x_1, y_1, z_1) S(x_2, y_2, z_2)$, establishes the useful formula

$$\mathbf{a}\times(\mathbf{b}\times\mathbf{c})=(\mathbf{c}\cdot\mathbf{a})\mathbf{b}-(\mathbf{a}\cdot\mathbf{b})\mathbf{c}$$

which implies that

$$S(qv)^2 = -\|\mathbf{v}\|^2 \Pi_{\mathbf{v}^{\perp}} \oplus 0\Pi_{\mathbf{v}}$$

where Π denotes orthogonal projection. In particular the eigenvalues of $S(\mathbf{v})$ are $0, \pm ||\mathbf{v}||$.

Furthermore

$$S(\mathbf{v})S(\mathbf{w}) - S(\mathbf{w})S(\mathbf{v}) = 2S(\mathbf{v} \times \mathbf{w})$$

Another consequence of this formula is *Jacobi's identity*:

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) = 0$$