Dr. Wolfe MATH 240 MATLAB PROJECT \#3 Due November 16, 2003
Eigenvalues and eigenvectors of square matrices can be found with the command eig. If $A$ is a square matrix $d=\boldsymbol{e i g}(A)$ produces a vector containing the eigenvalues of $A$ and $[V, D]=\operatorname{eig}(A)$ produces a diagonal matrix $D$ of eigenvalues and a matrix $V$ whose columns are the corresponding eigenvectors so that $A * V=V * D$.

1. Ex. 33, p.326, Lay. Call the matrix $A$. We will do the problem in two ways:
(a) Do $d=\operatorname{eig}(A)$. Then find the eigenvectors by row reduction, i.e. do $R=$ $\operatorname{rref}(A-d(1) * \mathbf{e y e}(4))$, etc. If you have vectors $p 1, p 2, p 3, p 4$, to form them into a matrix $P$, write $P=\left[\begin{array}{llll}p 1 & p 2 & p 3 & p 4\end{array}\right]$. Then check that $P * \operatorname{diag}(d) * \operatorname{inv}(P)=A$.
(b) Do $[V, D]=\operatorname{eig}(A)$ and check that $A=V * D * \operatorname{inv}(V)$. Note that $V$ and $P$ from part (a) may be quite different.
2. Ex. 15, p.341, Lay. Call the matrix $B$. Do $[V, D]=\mathbf{e i g}(B)$. Then take

$$
P=[\operatorname{real}((V(:, 1)) \quad \operatorname{imag}((V(:, 1))]
$$

and check that $\operatorname{inv}(P) * B * P$ has the correct form.
3.
(a) Find the general solution of $x^{\prime}=A x$, where

$$
A=\left(\begin{array}{rrrr}
3 & -1 & -6 & 0 \\
0 & 4 & 2 & 6 \\
3 & -3 & -7 & -3 \\
-5 & 3 & 10 & 2
\end{array}\right)
$$

(b) Find the solution of the initial value problem $x^{\prime}=A x, x(0)=x_{0}$ where $x_{0}=$ $(1,2,-1,3)^{T}$. Your result should involve vectors with integer entries.
Note: To get the $k^{t h}$ column vector of a matrix $V$ write $V(:, k)$.
4. The solution of $x^{\prime}=A x, x(0)=(1,0)^{T}$ where $A$ is the matrix of Ex. 14, p. 361 is given by

$$
x_{1}=\cos (2 t)-\sin (2 t), \quad x_{2}=-4 \sin (2 t)
$$

We wish to see what the trajectory of this solution looks like. So do

$$
t=0: .01: \operatorname{pi} ; x 1=\cos (2 * t)-\sin (2 * t) ; x 2=-4 * \sin (2 * t) ; \operatorname{plot}(x 1, x 2)
$$

Use the command print to print out the resulting graph. Remember that you cannot save the graph in your diary.

