Dr. Wolfe MATH 240 MATLAB PROJECT \#4 Due December 2, 2004

1. Ex. $35 \& 36$, p.393, Lay. To normalize a vector v, write $u=v / \operatorname{norm}(v)$. For 34(b) do $y=\boldsymbol{\operatorname { r a n d }}(8,1)$.
2. Ex. 25, p.401, Lay.
3. Ex. $24 \& 25$, p.408, Lay. Do $[Q, R]=\mathbf{q r}(A, 0)$.
4. The vapor pressure P of water (in bars) as a function of temperature $T\left({ }^{\circ} C\right)$ is

T	0	10	20	30
$\mathrm{P}(\mathrm{T})$.006107	.012277	.023378	.042433
T	40	50	60	70
$\mathrm{P}(\mathrm{T})$.073774	.12338	.19924	.31166
T	80	90	100	110
$\mathrm{P}(\mathrm{T})$.47364	.70112	1.01325	1.22341

We wish to fit this data to a quadratic polynomial $P=\beta_{0}+\beta_{1} T+\beta_{2} T^{2}$ in the sense of least squares.
(a) MATLAB has commands to do this automatically. Write $T=0: 10: 110$ and $P=\left[\begin{array}{lll}.006107 & .012277 & \cdots\end{array}\right]$. (Sorry, there is no easy way to do this.) Then do $p=\operatorname{polyfit}(T, P, 2) . p$ is a row vector with $p_{1}=\beta_{2}, p_{2}=\beta_{1}, p_{3}=\beta_{0}$. We now plot the curve and the data points:

$$
t=0: .5: 110 ; y=\operatorname{polyval}(p, t) ; \operatorname{plot}\left(t, y, T, P,^{\prime} o^{\prime}\right)
$$

To use the quadratic to estimate $P(45)$ do $a=\operatorname{polyval}(p, 45)$.
Now we work with the design matrix. So write

$$
X=T^{\prime}, \quad A=\left[\begin{array}{lll}
\operatorname{ones}(12,1) & X & X . * X
\end{array}\right], \quad b=P^{\prime}
$$

We will find $x=\left(\beta_{0}, \beta_{1}, \beta_{2}\right)^{T}$ in three different ways:
(b) Do $x=A \backslash b$.
(c) Solve the normal equations $A^{T} A x=A^{T} b$ with the backslash operator.
(d) Do $[Q, R]=\mathbf{q r}(A, 0)$. Then solve $R x=Q^{T} b$.

In each case compare your answer with the one found above.

