- 1. Ex. 35 & 36, p.393, Lay. To normalize a vector v, write $u = v/\mathbf{norm}(v)$. For 34(b) do $y = \mathbf{rand}(8, 1)$.
- 2. Ex. 25, p.401, Lay.
- 3. Ex. 24 & 25, p.408, Lay. Do $[Q, R] = \mathbf{qr}(A, 0)$.
- 4. The vapor pressure P of water (in bars) as a function of temperature $T({}^{\circ}C)$ is

Т	0	10	20	30
P(T)	.006107	.012277	.023378	.042433
T	40	50	60	70
P(T)	.073774	.12338	.19924	.31166
T	80	90	100	110
P(T)	.47364	.70112	1.01325	1.22341

We wish to fit this data to a quadratic polynomial $P = \beta_0 + \beta_1 T + \beta_2 T^2$ in the sense of least squares.

(a) MATLAB has commands to do this automatically. Write T=0:10:110 and $P=[.006107\ .012277\ \cdots]$. (Sorry, there is no easy way to do this.) Then do $p=\mathbf{polyfit}(T,P,2)$. p is a row vector with $p_1=\beta_2, p_2=\beta_1, p_3=\beta_0$. We now plot the curve and the data points:

$$t = 0:.5:110; y = \mathbf{polyval}(p, t); \mathbf{plot}(t, y, T, P, o')$$

To use the quadratic to estimate P(45) do $a = \mathbf{polyval}(p, 45)$.

Now we work with the design matrix. So write

$$X = T', A = [ones(12, 1) \ X \ X. * X], b = P'$$

We will find $x = (\beta_0, \beta_1, \beta_2)^T$ in three different ways:

- (b) Do $x = A \backslash b$.
- (c) Solve the normal equations $A^TAx = A^Tb$ with the backslash operator.
- (d) Do $[Q, R] = \mathbf{qr}(A, 0)$. Then solve $Rx = Q^T b$. In each case compare your answer with the one found above.