1. Name the only two Mathematics Departments in the USA with all three of the following:
i A Ph.D Graduate with a Nobel prize.
ii An undergraduate Math major who went on to win a Fields Medal.
iii A Fields Medalist on the faculty.
2. Let

$$
A=\left(\begin{array}{lll}
3 & 6 & 7 \\
3 & 3 & 7 \\
5 & 6 & 5
\end{array}\right)
$$

is $(1,-2,1)^{T}$ an eigenvector of A ? If so, find the eigenvalue.
3. Let

$$
B=\left(\begin{array}{rrr}
2 & 3 & 3 \\
12 & 5 & 6 \\
-27 & -15 & -16
\end{array}\right)
$$

Given that $(3+2 i, 5-i,-13)^{T}$ is an eigenvector of B corresponding to the eigenvalue $\lambda=-4+3 i$, find another eigenvalue of B and a corresponding eigenvector.
4. Let A be a 2×2 matrix whose eigenvalues are $\lambda_{1}=-1$ and $\lambda_{2}=2$ with corresponding eigenvectors $\mathbf{v}_{\mathbf{1}}=(1,1)^{T}$ and $\mathbf{v}_{\mathbf{2}}=(2,3)^{T}$ Solve the initial value problem $\mathbf{x}^{\prime}=$ $A \mathbf{x}, \quad \mathbf{x}(0)=(5,2)^{T}$.
5. Let A be as in problem 4. What is A ?
6. Let $\mathbf{u}=(1,1,1,1)^{T}, \mathbf{v}=(1,7,1,7)^{T}, W=\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$.
(a) Calculate $\|\mathbf{v}\|, \operatorname{dist}(\mathbf{u}, \mathbf{v})$, the projection of \mathbf{v} onto \mathbf{u} and the unit vector in the direction of \mathbf{u}.
(b) Apply the Gram-Schmidt process to $\{\mathbf{u}, \mathbf{v}\}$ to obtain an orthonormal basis for W.
(c) Let $\mathbf{y}=(3,2,-1,2)^{T}$. Find \mathbf{z}, the vector in W which is closest to \mathbf{y}.

