MATH 240

- 1. Name the only two Mathematics Departments in the USA with all three of the following:
 - i A Ph.D Graduate with a Nobel prize.
 - ii An undergraduate Math major who went on to win a Fields Medal.
 - iii A Fields Medalist on the faculty.
- 2. Let

$$A = \begin{pmatrix} 3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5 \end{pmatrix}$$

is $(1, -2, 1)^T$ an eigenvector of A? If so, find the eigenvalue.

3. Let

$$B = \begin{pmatrix} 2 & 3 & 3\\ 12 & 5 & 6\\ -27 & -15 & -16 \end{pmatrix}$$

Given that $(3+2i, 5-i, -13)^T$ is an eigenvector of *B* corresponding to the eigenvalue $\lambda = -4 + 3i$, find another eigenvalue of *B* and a corresponding eigenvector.

- 4. Let A be a 2×2 matrix whose eigenvalues are $\lambda_1 = -1$ and $\lambda_2 = 2$ with corresponding eigenvectors $\mathbf{v_1} = (1, 1)^T$ and $\mathbf{v_2} = (2, 3)^T$ Solve the initial value problem $\mathbf{x}' = A\mathbf{x}$, $\mathbf{x}(0) = (5, 2)^T$.
- 5. Let A be as in problem 4. What is A?
- 6. Let $\mathbf{u} = (1, 1, 1, 1)^T$, $\mathbf{v} = (1, 7, 1, 7)^T$, $W = \text{Span}\{\mathbf{u}, \mathbf{v}\}.$
 - (a) Calculate $\|\mathbf{v}\|$, dist (\mathbf{u}, \mathbf{v}) , the projection of \mathbf{v} onto \mathbf{u} and the unit vector in the direction of \mathbf{u} .
 - (b) Apply the Gram-Schmidt process to $\{\mathbf{u}, \mathbf{v}\}$ to obtain an orthonormal basis for W.
 - (c) Let $\mathbf{y} = (3, 2, -1, 2)^T$. Find \mathbf{z} , the vector in W which is closest to \mathbf{y} .