## The Use of Calculators Is Not Permitted On This Exam

1. Let $\mathbf{A}=(4,2,-1), \mathbf{B}=(7,1,1), \mathbf{C}=(12,2,1)$.
(a) Find parametric eqations for the line $L$ containing $\mathbf{A}$ and $\mathbf{B}$.
(b) Find symmetric equations for the line through $\mathbf{C}$ parallel to $L$.
(c) Find an equation of the plane $P$ containing $\mathbf{C}$ and perpendicular to $L$.
(d) Find $\mathbf{D}$, the point of intersection of the line $L$ and the plane $P$.
(e) Find the distance from the point $\mathbf{A}$ to the plane $P$.
(f) Find the area $A$ of the triangle whose vertices are $\mathbf{A}, \mathbf{B}$ and $\mathbf{C}$.
2. The position vector of a particle is given by

$$
\mathbf{R}(\mathrm{t})=(\sin \mathrm{t}-\mathrm{t} \cos \mathrm{t}) \mathbf{i}+(\cos \mathrm{t}+\mathrm{t} \sin \mathrm{t}) \mathbf{j} .
$$

Let C be the portion of the trajectory for which $2 \pi \leq t \leq 4 \pi$.
(a) Find the tangent vector $\mathbf{T}(\mathrm{t})$ and the normal vector $\mathbf{N}(\mathrm{t})$ for C .
(b) Find $a_{\mathbf{T}}$ and $a_{\mathbf{N}}$, the tangential and normal components of the acceleration of the particle.
(c) Find the curvature of C.
(d) Find the length of C.
3. A ball rolls off a horizontal roof of a building 144 feet tall with a speed of 24 feet per second. How far away from the building is it when it hits the ground? Take $g=32$ feet per second per second. (Note that the velocity vector is horizontal when the ball leaves the roof.)
4. Mark each statement as true ( T ) or false ( F ) (no reasons needed).
(i) If $\mathbf{u}$ and $\mathbf{v}$ are orthogonal unit vectors, $\mathbf{u} \times \mathbf{v}$ is a unit vector.
(ii) If $\mathbf{u}, \mathbf{v}$ and $\mathbf{w}$ are vectors then $(\mathbf{u} \cdot \mathbf{v}) \times \mathbf{w}=\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$.
(iii) A vector-valued function $\mathbf{r}$ defined on an interval $I$ is smooth if $\mathbf{r}$ has a continuous derivative on $I$.
(iv) If a smooth space curve $C$ has its curvature $\kappa(t)$ identically zero then $C$ is a line (or a line segment).
(v) If a particle moves with constant speed, its velocity and acceleration vectors are orthogonal.

