The Use of Calculators Is Not Permitted On This Exam

1. Let $f(x, y, z)=x^{2}+y^{2}-z$.
(a) Sketch and describe Σ, the level surface of f which passes through the point $P_{0}=$ $(2,1,6)$.
(b) Find an equation of the plane tangent to Σ at the point P_{0}.
(c) If $\mathbf{a}=\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$, find the directional derivative of f at P_{0} in the direction of \mathbf{a}.
(d) Find the direction in which f increases most rapidly at P_{0} and find the maximal directional derivative at that point.
(e) Let \mathbf{b} be a vector which is tangent to Σ at P_{0}. What is the directional derivative of f at P_{0} in the direction of \mathbf{b} ? Explain.
(f) Let $\mathbf{r}(t)=g_{1}(t) \mathbf{i}+g_{2}(t) \mathbf{j}+g_{3}(t) \mathbf{k}$ be a smooth curve with

$$
\mathbf{r}(1)=2 \mathbf{i}+\mathbf{j}+6 \mathbf{k}, \quad \frac{d \mathbf{r}}{d t}(1)=2 \mathbf{i}+4 \mathbf{j}-3 \mathbf{k} .
$$

Let $u=f(x, y, z)$ and $x=g_{1}(t), y=g_{2}(t), z=g_{3}(t)$. Find $\frac{d u}{d t}$ when $t=1$.
2. Let $g(x, y)=x e^{x y}$. Show that $g_{x y}=g_{y x}$.
3. By using an appropriate tangent plane for the function $g(x, y)=\sqrt{x^{2}+y}$, find an approximate value of $g(3.02,-4.98)$. The exact value is 2.034797287 .
4. Let

$$
f(x, y)=x^{2}+2 x y+3 y^{2}-2 x-10 y+9 .
$$

Find all critical points of f. Determine whether each critical point yields a relative maximum, a relative minimum or a saddle point.
5. The Ace Widget Company has determined that x units of labor and y units of capital can produce $f(x, y)=60 x^{3 / 4} y^{1 / 4}$ widgets. Also, suppose that each unit of labor costs $\$ 100$ while each unit of capital costs $\$ 200$. Assume that $\$ 40,000$ is available to spend on production. How many units of labor and how many units of capital should be utilized in order to maximize production?

