The Use of Calculators Is Not Permitted On This Exam

- 1. Let $f(x, y, z) = x^2 + y^2 z$.
- (a) Sketch and describe Σ , the level surface of f which passes through the point $P_0 = (2, 1, 6)$.
- (b) Find an equation of the plane tangent to Σ at the point P_0 .
- (c) If $\mathbf{a} = \mathbf{i} 2\mathbf{j} + 2\mathbf{k}$, find the directional derivative of f at P_0 in the direction of \mathbf{a} .
- (d) Find the direction in which f increases most rapidly at P_0 and find the maximal directional derivative at that point.
- (e) Let **b** be a vector which is tangent to Σ at P_0 . What is the directional derivative of f at P_0 in the direction of **b**? Explain.
- (f) Let $\mathbf{r}(t) = g_1(t)\mathbf{i} + g_2(t)\mathbf{j} + g_3(t)\mathbf{k}$ be a smooth curve with

$$\mathbf{r}(1) = 2\mathbf{i} + \mathbf{j} + 6\mathbf{k}, \qquad \frac{d\mathbf{r}}{dt}(1) = 2\mathbf{i} + 4\mathbf{j} - 3\mathbf{k}.$$

Let u = f(x, y, z) and $x = g_1(t)$, $y = g_2(t)$, $z = g_3(t)$. Find $\frac{du}{dt}$ when t = 1.

- 2. Let $g(x,y) = xe^{xy}$. Show that $g_{xy} = g_{yx}$.
- 3. By using an appropriate tangent plane for the function $g(x,y) = \sqrt{x^2 + y}$, find an approximate value of g(3.02, -4.98). The exact value is 2.034797287.
- 4. Let

$$f(x,y) = x^2 + 2xy + 3y^2 - 2x - 10y + 9.$$

Find all critical points of f. Determine whether each critical point yields a relative maximum, a relative minimum or a saddle point.

5. The Ace Widget Company has determined that x units of labor and y units of capital can produce $f(x,y) = 60x^{3/4}y^{1/4}$ widgets. Also, suppose that each unit of labor costs \$100 while each unit of capital costs \$200. Assume that \$40,000 is available to spend on production. How many units of labor and how many units of capital should be utilized in order to maximize production?