Dr. Wolfe MATH 241 MATLAB PROJECT \#2 Due March 1, 2007

In this assignment we will inverstigate curves in two and three dimensions. For many of the problems, the output is a picture. Be sure to title the pictures using the title command.

1. We will first graph the curve $\mathbf{r}(t)=(\sin t-t \cos t) \mathbf{i}+(\cos t+t \sin t) \mathbf{j}$ for $0 \leq t \leq 4 \pi$ together with some velocity vectors. So run the following script. (Note: a line starting with $\%$ is a comment and needn't be typed in.)
```
t=linspace(0,4*pi,121);
x=}\operatorname{sin}(\textrm{t})-\textrm{t}.*\operatorname{cos}(\textrm{t})
y=cos(t)+t.*}\operatorname{sin}(\textrm{t})
plot(x,y)
hold on
% Add the velocity vectors
for s=linspace(.16* pi,4* pi,24);
r=[\operatorname{sin}(\textrm{s})-\textrm{s}.*}\mp@subsup{}{}{*}\operatorname{cos}(\textrm{s}),\operatorname{cos}(\textrm{s})+\textrm{s}.*\operatorname{sin}(\textrm{s})]
u}=[\textrm{s}.*\operatorname{sin}(\textrm{s}),\textrm{s}.*\operatorname{cos}(\textrm{s})]
arrow(r,u,'r')
end
hold off
```

2. Repeat problem 1 for the parabola $\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}$ for $-2 \leq t \leq 2$.
3. Now we'll look at some space curves. We consider the helix $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t /(2 * \pi) \mathbf{k}$ for $0 \leq t \leq 4 \pi$. Run the following script.
$\mathrm{t}=$ linspace $\left(0,4^{*} \mathrm{pi}, 101\right)$;
$\mathrm{x}=$ inline $\left({ }^{(} \cos (\mathrm{t})^{\prime}\right)$;
$\mathrm{y}=$ inline $\left(' \sin (\mathrm{t})^{\prime}\right)$;
$\mathrm{z}=$ inline($\left.{ }^{\mathrm{t}} /\left(2^{*} \mathrm{pi}\right)^{\prime}\right)$;
plot3(x(t),y(t),z(t))
hold on
\% Add the velocity vectors.
for $\mathrm{s}=$ linspace $\left(0,4^{*} \mathrm{pi}, 17\right)$;
$\mathrm{p}=[\mathrm{x}(\mathrm{s}), \mathrm{y}(\mathrm{s}), \mathrm{z}(\mathrm{s})]$;
$\mathrm{v}=\left[-\sin (\mathrm{s}), \cos (\mathrm{s}), 1 /\left(2^{*} \mathrm{pi}\right)\right] ;$
arrow3(p, v, 'r')
end
view $(135,40)$
hold off
4. Repeat problem 3 for the curve $r(t)=t \mathbf{i}+t^{2} / 2 \mathbf{j}+t^{3} / 3 \mathbf{k}$ for $-2 \leq t \leq 2$. If you follow the model of problem 3 remember to write " $y=$ inline('t. ${ }^{\wedge} 2 / 2^{\prime}$ ')" etc.
5. We can also exhibit the Frenet frame. So execute the first 5 lines in problem 3. Then do

$$
\begin{aligned}
& \text { axis equal } \\
& \text { hold on } \\
& \text { frenet }(x, y, z)
\end{aligned}
$$

At this point you will get a prompt asking you to enter a value of t. Take $t=$ $0, .8 \pi, 2.2 \pi, 3.6 \pi$. Then do
view $(135,40)$
to rotate the figure. The result should be very pretty.
Now we'll investigate arclength. Let the curve C be parameterized by

$$
\mathbf{r}(t)=t \mathbf{i}+t^{2} / 2 \mathbf{j}+t^{3} / 3 \mathbf{k}, \quad 0 \leq t \leq 2
$$

6. First, we approximate the length of C by making a polygonal approximation.
```
\(\mathrm{t}=0: .02: 2\);
\(\mathrm{x}=\mathrm{t} ; \mathrm{y}=\mathrm{t} .^{\wedge} 2 / 2 ; \mathrm{z}=\mathrm{t} .^{\wedge} 3 / 3\);
sum \(=0\);
for \(\mathrm{j}=1: 100\)
        \(d x=x(j+1)-x(j) ;\)
        \(d y=y(j+1)-y(j)\);
        \(\mathrm{dz}=\mathrm{z}(\mathrm{j}+1)-\mathrm{z}(\mathrm{j})\);
        \(d r=[d x, d y, d z] ;\)
        sum=sum + norm(dr);
    end
    disp('Length of the polygonal appox. using 100 seqments')
    sum
```

7. Next we will use the numerical integrator quadl. We have

$$
\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{1+t^{2}+t^{4}}
$$

The arclength integral cannot be computed by hand. So do
speed $=$ inline ('sqrt $\left.\left(1+\mathrm{t} .{ }^{\wedge} 2+\mathrm{t} .{ }^{\wedge} 4\right)^{\prime}\right)$
$\mathrm{s}=$ quadl $($ speed $, 0,2)$
Compare your answer with the answer for problem 6.
8. Let the curve C be parameterized by

$$
\mathbf{P}(t)=(1-\cos t) \mathbf{i}+\left(1+2 t+t^{2}\right) \mathbf{j} .
$$

(a) Calculate by hand a tangent vector to the curve at $P(0)$.
(b) Use MATLAB to compute secant vectors $(\mathbf{P}(t)-\mathbf{P}(0)) / t$ for $t=.2, .1, .05$. The error in the secant approximation is

$$
\frac{\mathbf{P}(t)-\mathbf{P}(0)}{t}-\mathbf{P}^{\prime}(0)
$$

By what factor is the error in each component decreased when t is cut in half?
(c) Plot the curve C for $0 \leq t \leq 1$ and use the arrow feature to plot each of these secant vectors as well as the tangent vector computed in part (a). Attach each of these vectors to the point $\mathbf{P}(0)=(0,1)$.

