
Dr. Wolfe MATH 241 MATLAB PROJECT #5 Due May 8, 2007

In this assignment we investigate vector fields and work integrals.

1. Consider the vector field

F(x, y, z) = i + (x + y2)j + zk.

We shall display this vector field in the rectangle

R = {−2 ≤ x ≤ 3, −1 ≤ y ≤ 2, −1 ≤ z ≤ 1}.

Here is the script to do this.

u=inline(’1+0*x’,’x’,’y’,’z’);
v=inline(’x+y.ˆ2’,’x’,’y’,’z’);
w=inline(’z’,’x’,’y’,’z’);
x=linspace(−2, 3, 6);
y=linspace(−1, 2, 6);
z=linspace(−1, 1, 6);
[X,Y,Z]=meshgrid(x,y,z);
U=u(X,Y,Z);
V=v(X,Y,Z);
W=w(X,Y,Z);
quiver3(X,Y,Z,U,V,W)

For use in the next few problems, we will need the mfile simpvec. So write the following
script and save it as simpvec.m.

function s=simpvec(n)
s=2*ones(1,n+1);
s(2:2:n)=4*ones(1,n/2);
s(1)=1; s(n+1)=1;

2. We use Simpson’s rule to estimate the value of the line integral
∫

C
F · dr, where

F(x, y, z) = xi + zj + ex+yk

and C is parameterized by r(t) = t cos ti + t sin tj + t2k, 0 ≤ t ≤ 2π. A call is made to the
mfile simpvec.

% Define the components of F.
u=inline(’x’,’x’,’y’,’z’);
v=inline(’z’,’x’,’y’,’z’);
w=inline(’exp(x+y)’,’x’,’y’,’z’);
% Choose the t values for Simpson’s rule.
n=200;



t=linspace(0,2*pi,n+1); dt=2*pi/n;

s=simpvec(n);

% Calculate the x,y,z values along the curve.

x=t.*cos(t); y=t.*sin(t); z=t.ˆ2;

% Calculate the components of rdot along the curve

xdot=cos(t)−t.*sin(t);

ydot=sin(t)+t.*cos(t);

zdot=2*t;

% Calculate the terms of the intgrand

I1=u(x,y,z).*xdot;

I2=v(x,y,z).*ydot;

I3=w(x,y,z).*zdot;

% Compute the integal using simpson.

integral =dot(s,(I1+I2+I3))*dt/3

3.

(a) Let F(x, y) = xyi + cos(xy)j. Use quiver to graph the vector field on the square
0 ≤ x, y ≤ 4.

(b) Let C be parametrized by r(t) = t2i+etj, 0 ≤ t ≤ 2. Following the pattern of Exercise
2, make a numerical estimate of the line integral

∫
c
F · dr. Use Simpson’s rule, first

with 100 subdivisions and then with 200 subdivisions. Estimate the error in the first
calculation by using the fact that the second calculation should be far more accurate.

4.

(a) Let F(x, y, z) = (1 − y2 − z2)i. Use quiver3 to graph the vector field on the cube
−1 ≤ x, y, z ≤ 1.

(b) Let the curve C be parameterized by r(t) = ti+t cos tj+t sin tk, 0 ≤ t ≤ 2π. Calculate
the line integral

∫
C

F · dr by hand, and numerically with Simpson’s rule.

mfile lint.m The mfile lint.m estimates the line integral of a two-dimensional vector field
F(x, y) = u(x, y)i + v(x, y)j along a polygonal path determined by the user by clicking on
the figure. The call is lint(u,v,corners), where, as usual, corners is a vector [a, b, c, d ]
that defines a rectangle R. You are then asked to enter the number N of line segments in
the path. The file uses quiver to plot the vector field over R. Then click on the figure
with the left mouse button to start the path of integration. A second click produces a line
from the first point to the second point and computes the work done by the vector field
along this line. This procedure can be repeated a total of N times. The cumulative value
of the line integral is shown on the screen. The program also computes the line integral∫

C
x dy. When the curve C is closed and forms a positively oriented polygon, this line

integral is the area of the polygon.

. 5. Let

F(x, y) = (x + sin y)i + x cos yj.



(a) Use the mfile lint.m with this F and the rectangle R = [1, 4]× [−2, 2]. Calculate the
work done by any two paths from the point (1.5,−1) to the point (3.5, 1). Use any
number of segments. What are your results?

(b) Calculate the work around any closed path. What can you conclude about this vector
field.


