The Use of Calculators Is Not Permitted On This Exam

1. Show that the points $(2,1,0),(0,2,-1)$ and $(6,-1,2)$ are colinear and find symmetric equations for the line containing them.
2. Find an equation of the plane containing the points $(1,0,-1),(-5,3,2)$ and $(2,-1,4)$.
3. Let $\mathbf{u}=3 \mathbf{i}+5 \mathbf{j}+\mathbf{k}, \mathbf{v}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$. Write $\mathbf{u}=\mathbf{u}_{\mathbf{1}}+\mathbf{u}_{\mathbf{2}}$ where $\mathbf{u}_{\mathbf{1}}$ is parallel to \mathbf{v} and $\mathbf{u}_{\mathbf{2}}$ is perpendicular to \mathbf{v}.
4. Let C be the curve.

$$
\mathbf{r}(t)=\left(t^{2}+1\right) \mathbf{i}+(4 t-3) \mathbf{j}+\left(2 t^{2}-6 t\right) \mathbf{k}
$$

(a) Show that the point $P=(2,-7,8)$ lies on C.
(b) Find the equation of the line tangent to C at P. (Note: We didn't discuss tangent lines in class but it should be clear what this is.)
(c) Write an integral which gives the length of that part of C for which $1 \leq t \leq 2$. Do not evaluate the integral.
5. Find the position, velocity and speed of an object whose acceleration is $\mathbf{a}=-32 \mathbf{k}$, initial position is $\mathbf{r}_{\mathbf{0}}=5 \mathbf{j}+2 \mathbf{k}$ and whose initial velocity is $\mathbf{v}_{\mathbf{0}}=3 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$.
6. The trajectory of a particle is given by

$$
\mathbf{r}(t)=3 \cos t \mathbf{i}+3 \sin t \mathbf{j}+4 t \mathbf{k}
$$

(a) Find the tangent vector $\mathbf{T}(t)$ and the normal vector $\mathbf{N}(t)$ of the trajectory of the particle.
(b) Find $a_{\mathbf{T}}$ and $a_{\mathbf{N}}$, the tangential and normal components of the acceleration of the particle.
(c) Find $\kappa(t)$, the curvature of the trajectory.

