The Use of Calculators Is Not Permitted On This Exam

1. Multiple choice. The equation of the graph shown below is
(a) $x^{2}+y^{2}=z^{2}-1$
(b) $x^{2}+y^{2}=z^{2}$
(c) $x^{2}+y^{2}=z^{2}+1$

2. Let $w=f(x, y, z)$ be a differentiable function. Suppose that $f(4,4,-2)=6$ and $\nabla f(4,4,-2)=2 \mathbf{i}+\mathbf{j}-\mathbf{k}$.
(a) Find the directional derivative of f at $(4,4,-2)$ in the direction toward the origin.
(b) In what direction is the directional derivative of f at $(4,4,-2)$ a maximum and what is the maximum value of the directional derivative ?
(c) Find an equation of the tangent plane to the level surface $f(x, y, z)=6$ at $(4,4,-2)$.
(d) If $x(t)=4+3 t, y(t)=4-2 t, z(t)=-2+t+t^{2}$, what is $\frac{d w}{d t}$ at $t=0$?
3. Let $f(x, y)=\sin x y$. Compute all the second partial derivatives of f.
4. Suppose $g(x, y)$ is a differentiable function such that $g(2,3)=7, \nabla g(2,3)=2 \mathbf{i}-5 \mathbf{j}$. What is your best estimate for $g(1.98,3.03)$?
5. Let

$$
f(x, y)=x^{2} y-4 x y+2 y^{2}-12 y
$$

Find all critical points of f. Determine whether each critical point yields a relative maximum, a relative minimum or a saddle point.
6. Suppose that a firm makes two products, widgets and flibbits, using the same raw materials. If x widgets and y flibbits are produced then x and y must satisfy the constraint $x^{2}+2 y^{2}=8100$. (This expresses a limitation on the amount of raw materials available.) Each widget produces $\$ 5$ profit and each flibbit produces $\$ 20$ profit. How many of each product should the firm produce in order to maximize the profit?

