The Use of Calculators Is Not Permitted On This Exam

1. By reversing the order of integration, evaluate

$$
\int_{0}^{1} \int_{\sqrt{x}}^{1} \sqrt{1+y^{3}} d y d x
$$

2. Set up a triple integral for finding the volume V of the solid bounded on the top by the plane $z=y$, on the bottom by the $x y$ plane and on the sides by the plane $x+y=5$ and the hyperbolic sheet $x y=4$. Do not evaluate the integral.
3. An object occupies the region bounded above by the sphere $x^{2}+y^{2}+z^{2}=1$ and below by the cone $z=\sqrt{x^{2}+y^{2}}$ and has mass density

$$
\delta(x, y, z)=z \sqrt{x^{2}+y^{2}+z^{2}} .
$$

(a) Find the mass of the object.
(b) Find the center of gravity of the object.
4. Find the surface area S of the portion of the surface $z=x y$ that is inside the cylinder $x^{2}+y^{2}=1$.
5. Compute $\iint_{D} y d A$ where D is the region bounded by $y=2 x, x=2 y$ and $x+y=3$ by making the change of variables $x=2 u+v, y=u+2 v$.

