The Use of Calculators Is Not Permitted On This Exam

1. Let $\mathbf{F}=\left(2 x z+y^{2}\right) \mathbf{i}+\left(z^{2}+2 x y\right) \mathbf{j}+\left(2 y z+x^{2}+1\right) \mathbf{k}$.
(a) Show that F is conservative and find a function f such that $\mathbf{F}=\nabla f$.
(b) Compute $\int_{C} \mathbf{F} \cdot \mathbf{d r}$ where C is the curve

$$
x=t^{5}, \quad y=1-\cos ^{3} \pi t / 2, \quad z=\sin ^{3} \pi t / 2, \quad 0 \leq t \leq 1
$$

2. Use Green's Theorem to compute

$$
\int_{C} x y d x+x^{2} d y
$$

where C is the triangle with vertices $(0,0),(1,0)$ and $(0,2) . C$ is oriented counterclockwise.
3. Evaluate $\iint_{\Sigma} \nabla \times \mathbf{F} \cdot \mathbf{n} d S$ where $\mathbf{F}=x z^{2} \mathbf{i}+x \mathbf{j}+\cos x z \mathbf{k}$ and Σ is the part of the ellipsoid $x^{2}+y^{2}+3 z^{2}=1$ above the $x y$ plane. \mathbf{n} is directed upward.
4. Evaluate $\iint_{\Sigma} \mathbf{F} \cdot \mathbf{n} d S$ where $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z^{2} \mathbf{k}$ and Σ is the boundary of the solid region bounded below by the cone $z=\sqrt{x^{2}+y^{2}}$ and above by the plane $z=1$. \mathbf{n} points outward.

