The Use of Calculators Is Not Permitted On This Exam

1. Let $\mathbf{F}=y \sin z \mathbf{i}+(x \sin z+z) \mathbf{j}+(x y \cos z+y+2 z) \mathbf{k}$.
(a) Show that F is conservative and find a function f such that $\mathbf{F}=\nabla f$.
(b) Compute $\int_{C} \mathbf{F} \cdot \mathbf{d r}$ where C is the curve

$$
x=\frac{2 t}{t^{2}+1}, \quad y=t^{7 / 4}, \quad z=\frac{\pi}{t^{2}+1}, \quad 0 \leq t \leq 1
$$

(The curve is oriented in the direction of increasing t.)
2. Use Green's Theorem to compute

$$
\int_{C} x^{2} y d x+x^{3} d y
$$

where C is the boundary of the region in the first quadrant between the graphs of $y=x^{2}$ and $y=x$ oriented counterclockwise.
3. Use Stokes' theorem to evaluate

$$
\iint_{\Sigma}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S
$$

where $\mathbf{F}=3 z \mathbf{i}+5 x \mathbf{j}-2 y \mathbf{k}, \Sigma$ is the part of the paraboloid $z=x^{2}+y^{2}$ that lies below the plane $z=4$ and \mathbf{n} is the upward pointing unit normal to Σ.
4. Let Σ be the boundary of the region D in the first octant bounded above by the plane $z=1$, below by the plane $z=0$ and on the sides by the planes $x=0, y=0$ and $x+y=1$. Let

$$
\mathbf{G}(x, y, z)=x^{2} \mathbf{i}+y \mathbf{j}+z^{2} \mathbf{k}
$$

Compute

$$
\iint_{\Sigma} \mathbf{G} \cdot \mathbf{n} d S
$$

where \mathbf{n} is the outward unit normal to Σ.

