The Use of Calculators Is Not Permitted On This Exam

1. Consider $I=\iint_{R} \sqrt{x^{2}+y^{2}} d A$ where R is the region in the first quadrant bounded by $y=x$, the x axis and $x^{2}+y^{2}=4$.
(a) Write I as an iterated integral or integrals (you may need more than one) with the order of integration first y, then x.
(b) Write I as an iterated integral or integrals with the order of integration first x , then y.
(c) Write I as an integral in polar coordinates.
(d) Evaluate I.
2. Find the area S of the portion of the surface $z=x^{2} / 2+\sqrt{8} y$ which lies directly above the triangle with vertices $(0,0,0),(4,0,0)$ and $(4,8,0)$.
3. Set up a triple integral for finding the volume V of the region in the first octant bounded above by the plane $2 x+y+z=6$, on the sides by the hyperbolic sheet $x y=4$ and below by the $x y$ plane. Do not evaluate the integral.
4. A solid occupies the region in the first octant bounded above by the sphere $x^{2}+y^{2}+z^{2}=4$, below by the cone $z=\sqrt{x^{2}+y^{2}}$ and on the sides by the planes $x=0$ and $y=0$. It has density $\delta(x, y, z)=x^{2}+y^{2}$. Set up the integral for the moment $M_{y z}$ of the solid about the yz plane:
(a) In rectangular coordinates.
(b) In cylindrical coordinates.
(c) In spherical coordinates.

DO NOT EVALUATE.
5. Compute $I=\iint_{R} y^{2} d A$ where R is the region in the first quadrant bounded by the hyperbolas $x y=1$ and $x y=2$ and the lines $y=x$ and $y=4 x$ by making the change of variables $x=u / v, y=v$. (Answer: $\mathrm{I}=9 / 4$.)

