1. Probs. 39 \& 41, p.49, Lay.
2. Probs. $41 \& 43$, p.72, Lay.
3. Prob.30, p.81, Lay.
4. Prob.22, p.117, Lay.
5. Prob.11, p.184, Lay.
6. Recall that a square matrix A is symmetric if $A=A^{T}$. Prove that if A is $m \times n, A A^{T}$ and $A^{T} A$ are always symmetric. Show by example that they may not be equal, even for square matrices.
7. Find the orthogonal complement of the plane spanned by the vectors $(1,1,3)$ and $(1,2,5)$ by taking these to be the rows of A and solving $A \mathbf{x}=\mathbf{0}$. Remember that the compliment is a whole line
8. Prove by induction on n : For $n \geq 2$, the inverse of an $n \times n$ invertible lower-triangular matrix is a lower- triangular matrix. Hint: Work with matrices partitioned as

$$
A_{n+1}=\left[\begin{array}{ll}
A_{n} & \mathbf{0} \\
\mathbf{b}^{T} & a
\end{array}\right]
$$

where $\mathbf{b} \in \mathbf{R}^{n}$.

