1. Prob. 14, sec. 8.1, Lay.
2. Choose a set S of four distinct points in $\mathbf{R}^{\mathbf{3}}$ such that aff S is the plane $x_{1}+3 x_{2}-2 x_{3}=6$. Justify your work.
3. Prob. 11, 16, 18, sec. 8.2 Lay.
4. Prob. 7, 17, sec. 8.3, Lay.
5. Prob. 16, sec. 8.4, Lay.
6. Prob. 10, 12, sec 8.5, Lay.
7. Find the convex hull of the set of points (x, y) in \mathbf{R}^{2} which satisfy the given conditions.
(a) $y=x^{2}$ and $x \geq 0$.
(b) $y=1 / x$ and $x \geq 1 / 2$.
(c) $y=\sin x$.
8. Let $P=\operatorname{conv} S$ where $S=\{(1,1),(2,2),(2,3),(4,4),(5,2)\}$ Write P as a set of the form $\{\mathbf{x}: A \mathbf{x} \leq \mathbf{b}\}$. Hint: First find the suuporting hyperplanes which are, in this case, lines.
