1. Let

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 1 \\ 3 & 2 & 1 \end{pmatrix}$$

(a) Find a permutation matrix P, a lower triangular matrix L and an upper triangular matrix U such that

$$PA = LU. (1)$$

- (b) Show how the factorization (1) is used to solve $A\mathbf{x} = \mathbf{b}$.
- 2. Let $\mathbf{u} = (1, 1, 1, 1)^T$, $\mathbf{v} = (1, 7, 1, 7)^T$, $W = \text{Span}\{\mathbf{u}, \mathbf{v}\}$.
 - (a) Calculate $\|\mathbf{v}\|$, the projection of \mathbf{v} onto \mathbf{u} and the unit vector in the direction of \mathbf{u} .
 - (b) Apply the Gram-Schmidt process to $\{\mathbf{u}, \mathbf{v}\}$ to obtain an orthonormal basis for W.
 - (c) Let $\mathbf{y} = (3, 2, -1, 2)^T$. Find \mathbf{z} , the vector in W which is closest to \mathbf{y} .
- 3. Let $\mathbf{u_1} = (1, 2, 3)^T$, $\mathbf{u_2} = (1, 1, -1)^T$, $W = \text{span}\{\mathbf{u_1}, \mathbf{u_2}\}$. Find a basis for W^{\perp} .
- 4. Let **u** be a unit vector in \mathbf{R}^n and let $P = I 2\mathbf{uu^T}$. (*P* is an $n \times n$ matrix.) Show (a) *P* is symmetric.
 - (b) P is orthogonal.
 - (c) $P^2 = I$.
 - If $\mathbf{u} = (\frac{3}{5}, \frac{4}{5})^T$, what is P?
- 5. We wish to fit the data (0,1), (1,3), (2,7), (3,10), (4,20) to a function of the form

$$f(x) = a + bx + ce^x$$

in the sense of least squares. Find an equation for the coefficients a, b and c. Do not do any computations.

6. In C[0,1] with the inner product defined by

$$f \cdot g = \int_0^1 f(x)g(x) \, dx$$

consider the vectors 1 and x.

- (a) Determine the projection p of 1 onto x and verify that 1 p is orthogonal to p.
- (b) Compute ||1 p||, ||p||, ||1|| and verify that the Pythagorean theorem holds.