1. (15 points) Let

$$A = \begin{pmatrix} 36 & 30 & 18\\ 30 & 41 & 23\\ 18 & 23 & 12 \end{pmatrix}$$

- (a) Factor A as A = LU where L is <u>unit</u> lower triangular (i.e. $l_{ii} = 1, i = 1, 2, 3$.) and U is upper triangular. (This is the usual LU decomposition).
- (b) Now factor A as $A = LDL^T$ where L is as in part (a) and D is diagonal.
- (c) Use the result of (b) to show that A is <u>not</u> positive definite. Can you find a vector $\mathbf{x} \in R^3$ such that $\mathbf{x}^T A \mathbf{x} < 0$?
- 2. (18 points) Let

$$C = \begin{pmatrix} 2 & 4 \\ 2 & 10 \\ 1 & -1 \end{pmatrix}$$

- (a) Apply the Gram-Schmidt procedure to find an orthonormal basis for the column space of C.
- (b) Use the result of (a) to find a 3×2 matrix Q with orthonormal columns and a 2×2 upper triangular matrix R such that C = QR.
- (c) Use the result of (b) to find the least squares solution to $C\mathbf{x} = \mathbf{b}$ where $\mathbf{b} = (18, 12, 12)^T$.
- 3. (15 points) Let

$$B = \begin{pmatrix} 2 & 1 & 0\\ 0 & 2 & 1\\ 0 & 0 & 2 \end{pmatrix}$$

- (a) Show that B is <u>not</u> diagonalizable.
- (b) Compute e^{tB} .
- 4. (12 points) Find the general solution in terms of <u>real</u> functions of the system

$$y'_1 = y_1 + y_2$$

 $y'_2 = -2y_1 + 3y_2$

5. (12 points) Let

$$A = \begin{pmatrix} 5 & 2\\ -2 & 0 \end{pmatrix}$$

(a) Use the power method to find an approximation to the dominant eigenvalue of A. To be more specific, let $\mathbf{q}_0 = (1, 1)^T$ and compute $\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3, \mathbf{q}_4, \mathbf{q}_k = A^k \mathbf{q}_0$. It should be clear that if we rescale the **q's** appropriately, the resultant vectors converge to a vector \mathbf{x}_1 . What is \mathbf{x}_1 ? Show that \mathbf{x}_1 is an eigenvector of A and find the corresponding eigenvalue λ_1 .

- (b) Find an orthogonal matrix U whose first column is an eigenvector of A corresponding to λ_1 . You should be able to find U by inspection. Compute $B = U^T A U$. This should be upper triangular. Explain how you can now find the other eigenvalue of A by inspection.
- 6. (18 points) A carpenter can make tables and chairs. Each table takes 2 hours to make and uses 30 board-feet of lumber. A chair takes one hour to make and uses 10 board-feet of lumber. Each table brings a profit of \$25 and each chair brings a profit of \$10. He has 90 board-feet of lumber on hand. He wants to work no more than 8 hours and maximize his profit.
 - (a) Formulate this situation as a Linear Programming problem.
 - (b) Solve the problem by graphing the feasible set for the problem.
 - (c) Solve the problem by using the simplex algorithm.
- 7. (10 points) Mark each of the following statements true (T) or false (F). If the statement is false explain why it is false.
 - (a) Every matrix A has a singular value decomposition.
 - (b) If **u** and **v** are vectors in \mathbb{R}^n , the orthogonal projection **p** of **u** on **v** is $\mathbf{p} = \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{v}$.
 - (c) Let A be an $n \times n$ matrix. If A is diagonalizable then A is invertible.
 - (d) Let M be a Markov matrix (sometimes called a stochastic matrix). Then 1 is an eigenvalue of M.
 - (e) The graph of $x^2 + 4xy + 5y^2 = 1$ is a hyperbola.