- 1. P3.2.14, p.152 Strang.
- 2. P3.3.24, p.165 Strang.
- 3. P3.4.6, p.180 Strang.
- 4. Let \mathbf{P}^2 be the vector space of all polynomials of degree ≤ 2 equipped with the inner product

$$\langle p,q \rangle = p(0)q(0) + p(1)q(1) + p(2)q(2).$$

- (a) Find ||1||, ||t||, $||t^2||$.
- (b) Find the orthogonal projection of $p_1(t) = t$ on $p_0(t) = 1$.
- (c) Apply the Gram-Schmidt process to $\{1, t, t^2\}$ to construct an orthogonal basis of \mathbf{P}^2 .
- 5. P3.4.27, p.182 Strang.
- 6. (MATLAB) In a paper dealing with the efficiency of energy utilization of the larvae of the Modest Sphinx moth (*Pachysphinx modesta*), L. Schroeder used the following data to determine a quadratic least-squares log-log relation between W, the live weight of the larvae in grams, and R, the oxygen consumption of the larvae in ml/hr. The form of the relation was

$$\log R = a + b \log W + c (\log W)^2,$$

where a, b and c are constants determined by the data. Here $\log W$ is the common logarithm (MATLAB: $\log 10$).

W	R	W	R	W	R
0.017	0.154	0.783	1.47	0.111	0.357
0.233	0.537	2.75	1.84	1.11	0.531
1.32	1.15	3.02	2.01	1.69	1.44
4.29	3.40	5.45	3.52	4.83	4.66
			/		-

Form the 12×3 data matrix A and find the vector $(a, b, c)^T$ in 4 different ways.

- (a) By using the backslash operator.
- (b) By forming and solving the normal equations. Note the condition number of the matrix $A^T A$.
- (c) By using the QR decomposition.
- (d) By using the Singular-Value Decomposition. All this is quite easy in MATLAB. Plot the graph of R versus W with the values of a, b and c you found. On the same graph plot the data points. Note: if the data is represented as vectors R and W, to plot them do "plot(R, W, 'o')".
- 7. P3.6.22, p.207 **Strang.** (Read the material on weighted least squares starting on p.203.)
- 8. Let

$$f(x) = \begin{cases} -1 & -\pi \le x \le 0, \\ 1 & 0 < x \le \pi. \end{cases}$$

- (a) Expand f in a Fourier Series. Since f is an odd function there will only by terms involving $\sin nx$.
- (b) Plot f(x) and the first few partial sums on the same graph. Note: in MATLAB, once you have defined a vector of x-values (for example x=linspace(-pi,pi,101)), an easy way to create the function values is f(x) is "f(x) = (x > 0) (x < 0)".
- (c) How many term are need in the sum to get an error < .15?