In this exam, all sets are subsets of \mathbf{R} . N is the set of natural numbers (positive integers). You may use any result proven in class.

1. (15 points) Use induction to show that for all all $n \in N$,

$$\sum_{k=1}^{n} (2k-1) = n^2.$$

2. (20 points) Recall that we say that the infinite series $\sum_{k=1}^{\infty} a_k$ is convergent if the sequence of partial sums $\{s_n\}$ where $s_n = \sum_{k=1}^n a_k$ converges. Suppose that

$$0 \le a_k \le b_k$$
 for all $k \in N$.

Show that if $\sum_{k=1}^{\infty} b_k$ is convergent so is $\sum_{k=1}^{\infty} a_k$. (This is the comparison test.)

3. (20 points) Let $f : [a, b] \to \mathbf{R}$ be continuous. Suppose also that

$$a \leq f(x) \leq b$$
 for all $x \in [a, b]$.

(We say that $f([a, b]) \subset [a, b]$.) Prove that there is a $c \in [a, b]$ such that

f(c) = c.

Hint: Draw a picture.

4. (25 points) A function $f: D \to \mathbf{R}$ is said to be <u>Lipschitz continuous</u> if for some K > 0

$$|f(x) - f(y)| \le K|x - y|$$
 for all $x, y \in D$.

- (a) Show that if f is Lipschitz continuous on D, it is uniformly continuous on D.
- (b) Define $f(x) = \sqrt{x}$ for $0 \le x \le 1$. Prove that the function $f : [0,1] \to \mathbf{R}$ is uniformly continuous but not Lipschitz continuous.
- 5. (20 points) A set F is closed if it contains its limit points. A set \mathcal{O} is open if for every $x \in \mathcal{O}$ there is a $\delta_x > 0$ such that $(x \delta_x, x + \delta_x) \subset \mathcal{O}$.
 - (a) Show that [0,1] is closed, (0,1) is open and (0,1] is neither open nor closed.
 - (b) Is there a non-empty set which is <u>both</u> open and closed?