1.For each of the following statements, determine whether it is true or false and justify your answer:
(a) If the sequence $\left\{a_{n}^{2}\right\}$ converges, then the sequence $\left\{a_{n}\right\}$ also converges.
(b) If the sequence $\left\{a_{n}+b_{n}\right\}$ coverges, then the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ also converge.
(c) If the sequences $\left\{a_{n}+b_{n}\right\}$ and $\left\{a_{n}\right\}$ converge, then the sequence $\left\{b_{n}\right\}$ also converges.
(d) If the sequence $\left\{\left|a_{n}\right|\right\}$ converges, then the sequence $\left\{a_{n}\right\}$ also converges.
2. Ex. 1, 5, 8, Sec. 2.1, Cooper.
3.Let $\left\{a_{n}\right\}$ be a sequence such that

$$
\left|a_{n+1}-L\right| \leq \rho\left|a_{n}-L\right| \text { for all } n>N_{0}
$$

where $0<\rho<1$. Prove that $\left\{a_{n}\right\}$ converges to L.
4. The Fibonacci sequence is given by $a_{1}=1, a_{2}=1, a_{n+2}=a_{n}+a_{n+1}$ for $n \geq 1$. Let $u_{k}=a_{k+1} / a_{k}$. It is known that $\lim _{k \rightarrow \infty} u_{k}=L$.
(a) Find L.
(b) (Extra Credit) Prove $\lim _{k \rightarrow \infty} u_{k}=L$. Hint: You need the result of problem 3.
5. Ex.9, Sec. 2.1, Cooper.

