1. Ex. 3, 4, 7, Sec. 4.1, Cooper.
2. Ex. 2, 3, 6, 10, Sec. 4.2, Cooper.
3. Suppose that the function $f: \mathbf{R} \rightarrow \mathbf{R}$ has the property that

$$
-x^{2} \leq f(x) \leq x^{2} \text { for all } x
$$

Prove that f is differentiable at $x=0$ and that $f^{\prime}(0)=0$.
4. For real numbers a and b, define

$$
g(x)=\left\{\begin{array}{cc}
3 x^{2} & \text { if } x \leq 1 \\
a+b x & \text { if } x>1
\end{array}\right.
$$

For what values of a and b is the function $g: \mathbf{R} \rightarrow \mathbf{R}$ differentiable at $x=1$?
5. For each of the following statements, determine whether it is true of false and justify your answer.
(a) If the differentiable function $f: \mathbf{R} \rightarrow \mathbf{R}$ is strictly increasing, then $f^{\prime}(x)>0$ for all x.
(b) If the differentiable function $f: \mathbf{R} \rightarrow \mathbf{R}$ is monotonically increasing, then $f^{\prime}(x) \geq 0$ for all x.
(c) If the function $f: \mathbf{R} \rightarrow \mathbf{R}$ is differentiable and

$$
f(x) \leq f(0) \text { for all } x \in[-1,1]
$$

then $f^{\prime}(0)=0$.
(d) If the function $f: \mathbf{R} \rightarrow \mathbf{R}$ is differentiable and

$$
f(x) \leq f(1) \text { for all } x \in[-1,1]
$$

then $f^{\prime}(1)=0$.

