MATH 410 Dr. Wolfe ASSIGNMENT \#6 Due October 25, 2006

1. Prove or disprove the following statement: $f(x)=x-\sin x$ is strictly increasing on \mathbf{R}.
2. Ex. 1, 2, 5, 7, 8, Sec. 4.3-4.4, Cooper.
3. Ex. 8, 11, Sec. 5.1, Cooper.
4. Let the function $f: \mathbf{R} \rightarrow \mathbf{R}$ have the property that there is a positive number c such that $|f(u)-f(v)| \leq c(u-v)^{2}$ for all $u, v \in \mathbf{R}$. Prove that the function $f: \mathbf{R} \rightarrow \mathbf{R}$ is constant.
5. Let the function $f: \mathbf{R} \rightarrow \mathbf{R}$ have two derivatives and suppose that

$$
f(x) \leq 0 \quad \text { and } f^{\prime \prime}(x) \geq 0 \quad \text { for all } x .
$$

Prove that $f: \mathbf{R} \rightarrow \mathbf{R}$ is constant. (Hint: observe that $f^{\prime}: \mathbf{R} \rightarrow \mathbf{R}$ is increasing.)

