1. Ex. 5, 6, 9, Sec.7.2 Cooper.
2. Ex. 3, 4, 9, Sec. 7.3 Cooper.
3. Ex. 1, 2, 3. Sec. 7.5, Cooper.
4. The n-panel Trapezoid Rule, T_{n} for approximating $I=\int_{a}^{b} f(x) d x$ is

$$
T_{n}=\frac{h}{2}\left(f_{1}+2 f_{2}+\ldots+2 f_{n-1}+f_{n}\right)
$$

where $h=(b-a) / n, x_{i}=a+i h, i=0,1, \ldots, n$ and $f_{i}=f\left(x_{i}\right)$. Suppose f is continuous on $[a, b]$. Show that $\lim _{n \rightarrow \infty} T_{n}=I$ by showing that T_{n} is a Riemann sum for I. Hint: You have to manipulate the expression for T_{n}.

