- 1. Suppose S_1 and S_2 are arcwise connected subsets of $\mathbf{R}^{\mathbf{n}}$ with $S_1 \cap S_2 \neq \emptyset$.
 - (a) Show that $S_1 \cup S_2$ is arcwise connected.
 - (b) By drawing a picture in the plane, show that $S_1 \cap S_2$ is not necessarily arcwise connected.
- 2. Suppose S_1 and S_2 are convex subsets of \mathbf{R}^n with $S_1 \cap S_2 \neq \emptyset$.
 - (a) Show that $S_1 \cap S_2$ is convex.
 - (b) By drawing a picture in the plane, show that $S_1 \cup S_2$ is not necessarily convex.
- 3. Let S be a nonempty subset of \mathbb{R}^n . Define

$$C_H = \cap \{ K \mid S \subset K, K \text{ convex} \}$$

- C_H is called the *convex hull* of S
- (a) Show C_H is nonempty and convex. (See the argument in 2(a).)
- (b) Sketch C_H when $S = \{(x, y) \mid y = \sqrt{1 x^2}, -1 \le x \le 1\}.$
- 4. We say $F : \mathbf{R}^{\mathbf{n}} \to \mathbf{R}^{\mathbf{p}}$ is a *linear function* if (i) $F(\mathbf{p_1} + \mathbf{p_2}) = F(\mathbf{p_1}) + F\mathbf{p_2}$) for all $\mathbf{p_1}, \mathbf{p_2} \in \mathbf{R}^{\mathbf{n}}$. and (ii) $F(\alpha \mathbf{p}) = \alpha F(\mathbf{p})$ for all $\mathbf{p} \in \mathbf{R}^{\mathbf{n}}, \alpha \in \mathbf{R}$.
 - (a) Show that if F is a linear function and is continuous at $\mathbf{p}_0 = \mathbf{0}$ then F is uniformly continuous on $\mathbf{R}^{\mathbf{n}}$.
 - (b) If F is a linear function and $S \subset \mathbf{R}^n$ is convex, show that F(S) is also convex.
 - (c) Find a function with n = 2, p = 1 which satisfies (ii) but not (i).
- 5. Ex.10, p.269, Fitzpatrick.
- 6. Ex.12, p.309, *Fitzpatrick*.
- 7. Ex.3, p.317, Fitzpatrick.
- 8. Ex.13, p.319, Fitzpatrick.