1. Suppose S_{1} and S_{2} are arcwise connected subsets of $\mathbf{R}^{\mathbf{n}}$ with $S_{1} \cap S_{2} \neq \emptyset$.
(a) Show that $S_{1} \cup S_{2}$ is arcwise connected.
(b) By drawing a picture in the plane, show that $S_{1} \cap S_{2}$ is not necessarily arcwise connected.
2. Suppose S_{1} and S_{2} are convex subsets of $\mathbf{R}^{\mathbf{n}}$ with $S_{1} \cap S_{2} \neq \emptyset$.
(a) Show that $S_{1} \cap S_{2}$ is convex.
(b) By drawing a picture in the plane, show that $S_{1} \cup S_{2}$ is not necessarily convex.
3. Let S be a nonempty subset of $\mathbf{R}^{\mathbf{n}}$. Define

$$
C_{H}=\cap\{K \mid S \subset K, K \text { convex }\}
$$

C_{H} is called the convex hull of S
(a) Show C_{H} is nonempty and convex. (See the argument in 2(a).)
(b) Sketch C_{H} when $S=\left\{(x, y) \mid y=\sqrt{1-x^{2}},-1 \leq x \leq 1\right\}$.
4. We say $F: \mathbf{R}^{\mathbf{n}} \rightarrow \mathbf{R}^{\mathbf{p}}$ is a linear function if (i) $\left.F\left(\mathbf{p}_{\mathbf{1}}+\mathbf{p}_{\mathbf{2}}\right)=F\left(\mathbf{p}_{\mathbf{1}}\right)+F \mathbf{p}_{\mathbf{2}}\right)$ for all
$\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}} \in \mathbf{R}^{\mathbf{n}}$. and (ii) $F(\alpha \mathbf{p})=\alpha F(\mathbf{p})$ for all $\mathbf{p} \in \mathbf{R}^{\mathbf{n}}, \alpha \in \mathbf{R}$.
(a) Show that if F is a linear function and is continuous at $\mathbf{p}_{\mathbf{0}}=\mathbf{0}$ then F is uniformly continuous on $\mathbf{R}^{\mathbf{n}}$.
(b) If F is a linear function and $S \subset \mathbf{R}^{\mathbf{n}}$ is convex, show that $F(S)$ is also convex.
(c) Find a function with $n=2, p=1$ which satisfies (ii) but not (i).
5. Ex.10, p.269, Fitzpatrick.
6. Ex.12, p.309, Fitzpatrick.
7. Ex.3, p.317, Fitzpatrick.
8. Ex.13, p.319, Fitzpatrick.

