1. Consider $f: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}$ given by $f(x, y)=0$ whenever $y \leq 0$ or $y \geq x^{2}$ and $f(x, y)=1$ for $0<y<x^{2}$. For any fixed value of α show that $f(x, \alpha x) \rightarrow 0$ as $x \rightarrow 0(f$ has limit zero along any line). However, determine a sequence $\left(x_{k}, y_{k}\right) \rightarrow(0,0)$ where $f\left(x_{k}, y_{k}\right) \rightarrow 1$ (so that f is discontinuous at the origin).
2. Consider $f: \mathbf{R}^{\mathbf{n}} \rightarrow \mathbf{R}$ such that $f\left(\mathbf{p}_{\mathbf{1}}+\mathbf{p}_{\mathbf{2}}\right)=f\left(\mathbf{p}_{\mathbf{1}}\right) f\left(\mathbf{p}_{\mathbf{2}}\right)$ for all $\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}} \in \mathbf{R}^{\mathbf{n}}$.
(a) Show that either $f(\mathbf{0})=0$ or $f(\mathbf{0})=1$.
(b) Give a (non-constant) example of such an f with $f(0)=1$ when $n=1$.
(c) Assume $f(\mathbf{0})=1$. Show that f is continuous on $\mathbf{R}^{\mathbf{n}}$ if and only if f is continuous at $\mathbf{0}$.
3. Consider $f(x, y)=|x-y|$. Determine all directions \mathbf{p} for which $\frac{\partial f}{\partial \mathbf{p}}(1,1)$ exists.
4. Consider f defined by

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left\{\begin{array}{cl}
x_{1} x_{2} \cdots x_{n} /\left(x_{1}^{2}+x_{2}^{2}+\cdots x_{n}^{2}\right), & \left(x_{1}, \ldots, x_{n}\right) \neq(0, \ldots, 0) \\
0, & \left(x_{1}, \ldots, x_{n}\right)=(0, \ldots, 0)
\end{array}\right.
$$

Determine all values of n for which f is differentiable.
5. (Rolle's Theorem) Suppose $f: \mathbf{R}^{\mathbf{n}} \rightarrow \mathbf{R}$ is a differentiable function such that $f(\mathbf{p})=0$ if $\|\mathbf{p}\|=1$. Show that there is a \mathbf{q} with $\|\mathbf{q}\|<1$ such that $\mathbf{D} f(\mathbf{q})=\mathbf{0}$. (For $n=1$, this is Rolle's theorem. Examine the proof in this case.)
6. Ex.7, p.335, Fitzpatrick.
7. Ex.18, p.336, Fitzpatrick.
8. Ex.3, p.350, Fitzpatrick.

