1. Let $\mathbf{p}_{\mathbf{1}}=(3 / 5,-4 / 5), \mathbf{p}_{\mathbf{2}}=(3 / 5,4 / 5)$. If f is differentiable at $(1,1)$ and $\frac{d f}{d \mathbf{p}_{1}}(1,1)=$ $3, \frac{d f}{d \mathbf{p}_{\mathbf{2}}}(1,1)=2$, find the maximum value for $\frac{d f}{d \mathbf{p}}(1,1)$ for $\|\mathbf{p}\|=1$.
2. Assume $f: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}$ is differentiable on $\mathbf{R}^{\mathbf{2}}$.
(a) If $f(-1,0)=0$ and $f(1,0)=1$ show that there exist points $\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}$ with $\mathbf{p}_{\mathbf{1}} \neq$ $\mathbf{p}_{\mathbf{2}},\left\|\mathbf{p}_{\mathbf{1}}\right\|=\left\|\mathbf{p}_{\mathbf{2}}\right\|=1$ and $f\left(\mathbf{p}_{\mathbf{1}}\right)=f\left(\mathbf{p}_{\mathbf{2}}\right)=1 / 2$.
(b) If $f(0,0)=0$ and $f(\mathbf{p}) \geq 0$ for all $\|\mathbf{p}\|=1$, show there exists a \mathbf{q} such that $\|\mathbf{q}\|<1$ and $\mathbf{D} f(\mathbf{q})=\mathbf{0}$.
3. Assume $f: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}$ is differentiable on \mathbf{R}^{2}.
(a) Assume $f(0,0)=0$ and define $g: \mathbf{R}^{2} \rightarrow \mathbf{R}$ by $g(x, y)=f(f(y, x), f(-x, y))$. Show that $g_{x}(0,0)=0$ and $g_{y}(0,0)=\|\mathbf{D} f(0,0)\|^{2}$. Also, verify these results directly when $f(x, y)=\alpha x+\beta y ; \alpha, \beta$ constant.
(b) Define $u(x, y)=f(x / y, y / x)$ with domain $\mathcal{D}=\{(x, y): x y \neq 0\}$. Show that $x u_{x}+y u_{y}=0$ for all $(x, y) \in \mathcal{D}$.
(c) Define $v: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}$ by $v(x, y)=f(x-y, y-x)$. Show that $v_{x}+v_{y}=0$.
(d) Define $p: \mathbf{R} \rightarrow \mathbf{R}$ by $p(t)=f(f(t,-t), f(t, t))$ and assume $f(0,0)=0$. Show that $p^{\prime}(0)=\|\mathbf{D} f(0,0)\|^{2}$ and verify this directly when $f(x, y)=\alpha x+\beta y ; \alpha, \beta$ constant.
4. Assume $u: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}$ is twice continuously differentiable on \mathbf{R}^{2}
(a) If u satisfies the partial differential equation

$$
\begin{equation*}
x^{2} u_{x x}+y^{2} u_{y y}+x u_{x}+y u_{y}=0 \tag{1}
\end{equation*}
$$

show that the change of variables $x=e^{s}, y=e^{t}$ transforms (1) into

$$
u_{s s}+u_{t t}=0
$$

(b) Show that u satisfies the PDE $a u_{x}+b u_{y}=0$ where $a b \neq 0$ if and only if u is of the form $u(x, y)=g(a y-b x)$ where g is smooth. Hint: Consider the change of variables $x=a s-b t, y=b s+a t)$.
5. Assume $u: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}$ is smooth on $\mathbf{R}^{\mathbf{2}}$. By employing polar co-ordinates show that:
(a) $x u_{x}+y u_{y}=0 ;(x, y) \neq(0,0)$ if and only if $u(x, y)=F(\theta)$ for a smooth function F.
(b) $y u_{x}-x u_{y}=0 ;(x, y) \neq(0,0)$ if and only if $u(x, y)=G(r)$ for a smooth function G.
6. Consider $f(x, y)=x^{2} y+x+y$. Find θ for which the Mean Value Theorem (Theorem 13.9 in the book) applied to f is satisfied when $\mathbf{x}=(0,0), \mathbf{h}=(1,1)$.
7. Ex.11, p.379, Fitzpatrick.

