- 1. Let $\mathbf{p_1} = (3/5, -4/5), \mathbf{p_2} = (3/5, 4/5)$. If f is differentiable at (1, 1) and $\frac{df}{d\mathbf{p_1}}(1, 1) = 3, \frac{df}{d\mathbf{p_2}}(1, 1) = 2$, find the maximum value for $\frac{df}{d\mathbf{p}}(1, 1)$ for $\|\mathbf{p}\| = 1$.
- 2. Assume $f : \mathbf{R}^2 \to \mathbf{R}$ is differentiable on \mathbf{R}^2 .
 - (a) If f(-1,0) = 0 and f(1,0) = 1 show that there exist points $\mathbf{p_1}, \mathbf{p_2}$ with $\mathbf{p_1} \neq \mathbf{p_2}, \|\mathbf{p_1}\| = \|\mathbf{p_2}\| = 1$ and $f(\mathbf{p_1}) = f(\mathbf{p_2}) = 1/2$.
 - (b) If f(0,0) = 0 and $f(\mathbf{p}) \ge 0$ for all $\|\mathbf{p}\| = 1$, show there exists a \mathbf{q} such that $\|\mathbf{q}\| < 1$ and $\mathbf{D}f(\mathbf{q}) = \mathbf{0}$.
- 3. Assume $f : \mathbf{R}^2 \to \mathbf{R}$ is differentiable on \mathbf{R}^2 .
 - (a) Assume f(0,0) = 0 and define $g : \mathbf{R}^2 \to \mathbf{R}$ by g(x,y) = f(f(y,x), f(-x,y)). Show that $g_x(0,0) = 0$ and $g_y(0,0) = \|\mathbf{D}f(0,0)\|^2$. Also, verify these results directly when $f(x,y) = \alpha x + \beta y$; α, β constant.
 - (b) Define u(x,y) = f(x/y,y/x) with domain $\mathcal{D} = \{(x,y) : xy \neq 0\}$. Show that $xu_x + yu_y = 0$ for all $(x,y) \in \mathcal{D}$.
 - (c) Define $v: \mathbf{R}^2 \to \mathbf{R}$ by v(x, y) = f(x y, y x). Show that $v_x + v_y = 0$.
 - (d) Define $p : \mathbf{R} \to \mathbf{R}$ by p(t) = f(f(t, -t), f(t, t)) and assume f(0, 0) = 0. Show that $p'(0) = \|\mathbf{D}f(0, 0)\|^2$ and verify this directly when $f(x, y) = \alpha x + \beta y$; α, β constant.
- 4. Assume $u: \mathbf{R}^2 \to \mathbf{R}$ is twice continuously differentiable on \mathbf{R}^2
 - (a) If u satisfies the partial differential equation

$$x^2 u_{xx} + y^2 u_{yy} + x u_x + y u_y = 0 (1)$$

show that the change of variables $x = e^s$, $y = e^t$ transforms (1) into

$$u_{ss} + u_{tt} = 0$$

- (b) Show that u satisfies the PDE $au_x + bu_y = 0$ where $ab \neq 0$ if and only if u is of the form u(x, y) = g(ay bx) where g is smooth. Hint: Consider the change of variables x = as bt, y = bs + at).
- 5. Assume $u : \mathbf{R}^2 \to \mathbf{R}$ is smooth on \mathbf{R}^2 . By employing polar co-ordinates show that : (a) $xu_x + yu_y = 0$; $(x, y) \neq (0, 0)$ if and only if $u(x, y) = F(\theta)$ for a smooth function F.
 - (b) $yu_x xu_y = 0$; $(x, y) \neq (0, 0)$ if and only if u(x, y) = G(r) for a smooth function G.
- 6. Consider $f(x, y) = x^2y + x + y$. Find θ for which the Mean Value Theorem (Theorem 13.9 in the book) applied to f is satisfied when $\mathbf{x} = (0, 0)$, $\mathbf{h} = (1, 1)$.
- 7. Ex.11, p.379, *Fitzpatrick*.