1. The curve $x^{3}+y^{3}=3 x y$ is the folium of Descartes. Find the equation of the tangent line to the curve at $(3 / 2,3 / 2)$.
2. Consider the sphere, S, centered at $\left(x^{*}, y^{*}, z^{*}\right)$ with radius $r>0$. We wish to determine all points $\left(x_{0}, y_{0}, z_{0}\right) \in S$ for which all points on S in a neighborhood of $\left(x_{0}, y_{0}, z_{0}\right)$ can be expressed in the form $z=g(x, y)$.
(a) Show geometrically there exists a circle C for which this is impossible.
(b) Verify (a) algebraically.
(c) Find C by using the Implicit Function Theorem.
3. The intersection of the plane $x+y+z=1$ and the sphere $x^{2}+y^{2}+z^{2}=3$ forms a circle C. Verify that the points on C in a neighborhood of $(-1 / 3,-1 / 3,5 / 3)$ can be parameterized by one of the variables.
4. The plane $3 x+4 y+z=4$ intersects the cone $z=\sqrt{x^{2}+y^{2}}$ in a hyperbolic curve H. Note that $(1,0,1) \in H$. If $(x, y, z) \in H$ is sufficiently close to $(1,0,1)$ and $z>1$, show that $x>1$ and $y<0$.
5. Assume $g: \mathbf{R} \rightarrow \mathbf{R}$ is smooth and consider the equation:

$$
\begin{equation*}
g(x y)=g(x+y)+x-y . \tag{1}
\end{equation*}
$$

If $\left|g^{\prime}(4)\right|<1$ show there exists $\epsilon>0$ such that for all $2<y^{*}<2+\epsilon$ there exists a unique $x^{*}>2$ such that (x^{*}, y^{*}) solves (1).
6. Assume $g: \mathbf{R} \rightarrow \mathbf{R}$ is smooth, $g(0)=0$ and consider the equation:

$$
\begin{equation*}
z=g(a x+b y+c z) ; \text { for fixed, nonzero } a, b, c . \tag{2}
\end{equation*}
$$

(a) What further condition on g guarantees that we can express (2) in the form $z=\eta(x, y)$ in a neighborhood of $(0,0,0)$?
(b) Assuming (a) show that $b \eta_{x}(x, y)=a \eta_{y}(x, y)$ for all (x, y) near $(0,0)$.
7. A mountain can be expressed by the equation

$$
\begin{equation*}
x^{2} z^{2}+2 y z+x^{3}+\left(z^{2}+1\right) /\left(x^{2}+1\right)-x^{2} y+z^{4}+y=6 . \tag{3}
\end{equation*}
$$

Assume you are standing at $(1,1,1)$ and wish to climb down. What horizontal direction should you face so that the instantaneous rate of change of your first step will maximize your descent?
8. For all $(x, y) \approx(1,1)$ show there exists a unique pair $(u, v) \approx(0,1)$ where

$$
x^{2}+y u=v x, \quad y^{2}-x v=u^{2} .
$$

If $(x, y) \approx(1,1)$ and $x=y>1$ is $u>0$ or $u<0$?

