1. Assume f is continuous and non-negative on $\mathbf{R}^{\mathbf{2}}$. Given any rectangle R prove $\int_{R} f=$ 0 if and only if $f=0$ on R.
2. Assume f is continuous on \mathbf{R}^{2}. If $\int_{R} f=0$ for all rectangles R, show that $f=0$ on $\mathbf{R}^{\mathbf{2}}$. (Use proof by contradiction.)
3. Assume that the mixed partials $f_{x y}$ and $f_{y x}$ are continuous on an open set \mathcal{O} and $R=\{(x, y): a \leq x \leq b, c \leq y<d\} \subset \mathcal{O}$.
(a) Show: $\int_{R} f_{x y}=\int_{R} f_{y x}=f(b, d)+f(a, c)-f(a, d)-f(b, c)$.
(b) Use part (a) and problem 2 to show that $f_{x y}=f_{y x}$ on \mathcal{O}.
4. Let $R=\{(x, y): 0 \leq x, y \leq 1\}, f(x, y)=x+y$, and P_{n} represent the partition of R which divides the x and y axes into n equal sub-intervals. Calculate $U(P, f)$ and from this obtain $\int_{R} f$.
5. Let

$$
f(x, y)=\left\{\begin{array}{cc}
2 x y^{3}, & x \text { rational } \\
x y, & x \text { irrational }
\end{array}\right.
$$

and R as in problem 4. Explain why $\int_{R} f$ does not exist and then calculate $\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d y\right) d x$.
6. Let $R=\{(x, y): 0 \leq x, y \leq 1\}$ and assume f is increasing in x for each fixed y and increasing in y for each fixed x on R. Show that f is integrable over R. (Let P_{n} be as in problem 4 and examine $U\left(f, P_{n}\right)-L\left(f, P_{n}\right)$ carefully.)
7. If f is integrable over a rectangle R and $\int_{R} f>0$ show that the set $\{(x, y) \in R$: $f(x, y)>0\}$ has non-empty interior.
8. Ex. 2, p. 459, Fitzpatrick.
9. Ex. 7, p. 471, Fitzpatrick.
10. Ex. 8, p. 471, Fitzpatrick.

