- 1. Assume f is continuous and non-negative on \mathbb{R}^2 . Given any rectangle R prove $\int_R f =$ 0 if and only if f = 0 on R.
- 2. Assume f is continuous on \mathbf{R}^2 . If $\int_R f = 0$ for all rectangles R, show that f = 0 on \mathbf{R}^2 . (Use proof by contradiction.)
- 3. Assume that the mixed partials f_{xy} and f_{yx} are continuous on an open set \mathcal{O} and $R = \{(x, y) : a \le x \le b, c \le y < d\} \subset \mathcal{O}.$
 - (a) Show: $\int_R f_{xy} = \int_R f_{yx} = f(b,d) + f(a,c) f(a,d) f(b,c).$ (b) Use part (a) and problem 2 to show that $f_{xy} = f_{yx}$ on \mathcal{O} .
- 4. Let $R = \{(x, y) : 0 \le x, y \le 1\}, f(x, y) = x + y$, and P_n represent the partition of R which divides the x and y axes into n equal sub-intervals. Calculate U(P, f) and from this obtain $\int_R f$.
- 5. Let

$$f(x,y) = \begin{cases} 2xy^3, & x \text{ rational} \\ xy, & x \text{ irrational} \end{cases}$$

and R as in problem 4. Explain why $\int_R f$ does not exist and then calculate $\int_{0}^{1} (\int_{0}^{1} f(x, y) \, dy) \, dx.$

- 6. Let $R = \{(x, y) : 0 \le x, y \le 1\}$ and assume f is increasing in x for each fixed y and increasing in y for each fixed x on R. Show that f is integrable over R. (Let P_n be as in problem 4 and examine $U(f, P_n) - L(f, P_n)$ carefully.)
- 7. If f is integrable over a rectangle R and $\int_R f > 0$ show that the set $\{(x,y) \in R : x \in N\}$ f(x, y) > 0 has non-empty interior.
- 8. Ex. 2, p. 459, Fitzpatrick.
- 9. Ex. 7, p. 471, Fitzpatrick.
- 10. Ex. 8, p. 471, Fitzpatrick.

MATH 411