1. Construct a tridiagonal solver along the lines outlined in class. Your solver should be a function M-file with four vectors as input and the solution as the output. Test your solver on the problem $A \mathbf{x}=\mathbf{b}$ where A is the 9×9 tridiagonal matrix with 2 's on the main diagonal and -1 's on the super-and subdiagonals and $\mathbf{b}(j)=.01, j=1, \ldots, 9$. As a check, the answer should be $\mathbf{x}(j)=\frac{1}{2}\left(\frac{j}{10}\right)\left(1-\frac{j}{10}\right)$.
2. Let $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be $n+1$ distinct points. Let $\left\{l_{j}(x), j=0,1, \ldots, n\right\}$ be the corresponding set of Lagrange polynomials. Show that for all x

$$
\sum_{j=0}^{n} l_{j}(x)=1
$$

3. Ex.1(a), p.143, Atkinson \& Han.
4.

(a) Prove that the polynomial of degree $\leq n$ which interpolates $f(x)$ at $n+1$ distinct points is $f(x)$ itself in case $f(x)$ is a polynomial of degree $\leq n$.
(b) Prove that the $k^{t h}$ divided difference $p\left[x_{0}, x_{1}, \ldots, x_{k}\right]$ of a polynomial $p(x)$ of degree $\leq k$ is independent of the interpolation points $x_{0}, x_{1}, \ldots, x_{k}$.
(c) Prove that the $k^{\text {th }}$ divided difference of a polynomial of degree $<k$ is zero.
5. For $f(x)=\sinh x$ we are given that

$$
f(0)=0, f^{\prime}(0)=1, f(1)=1.1752, f^{\prime}(1)=1.5431
$$

Find $h_{3}(x)$, the unique Hermite cubic polynomial interpolating this data. Compare $h_{3}(0.5)$ with $f(0.5)=.5211$.
6. The Runge function is

$$
r(x)=\frac{1}{1+x^{2}}, \quad-5 \leq x \leq 5
$$

(a) For $n=5,10,15$, plot $p_{n}(x)$, the polynomial interpolating $r(x)$ at $n+1$ equally spaced points, along with the graph of $r(x)$. Use the MATLAB functions POLY-
FIT and POLYVAL. Observe what is happening to the graphs. Where is the polynomial fit getting better? Where is it getting worse ?
(b) Repeat part (a) but now use the interpolation points

$$
x_{j}=5 \cos \frac{(2 j-1) \pi}{2 n+2}, \quad j=1, \ldots, n+1
$$

What difference do you observe ?
7. Ex.1, p.156, Atkinson 83 Han.
8. Ex.5, p.156, Atkinson \& Han.
9. Consider the function $\mathrm{s}(\mathrm{x})$ defined as

$$
s(x)=\left\{\begin{array}{cc}
28+25 x+9 x^{2}+x^{3}, & -3 \leq x \leq-1 \\
26+19 x+3 x^{2}-x^{3}, & -1 \leq x \leq 0 \\
26+19 x+3 x^{2}-2 x^{3}, & 0 \leq x \leq 3 \\
-163+208 x-60 x^{2}+5 x^{3}, & 3 \leq x \leq 4
\end{array}\right.
$$

Show that $s(x)$ is a natural cubic spline function with the knots $\{-3,-1,0,3,4\}$. Be sure to state explicitly each of the properties of $s(x)$ which are necessary for this to be true.

