AMSC/CMSC 466 Dr. Wolfe ASSIGNMENT \#4 Due November 8, 2004

1. The vapor pressure P of water (in bars) as a function of temperature $T\left({ }^{\circ} C\right)$ is

T	0	10	20	30
$\mathrm{P}(\mathrm{T})$.006107	.012277	.023378	.042433
T	40	50	60	70
$\mathrm{P}(\mathrm{T})$.073774	.12338	.19924	.31166
T	80	90	100	110
$\mathrm{P}(\mathrm{T})$.47364	.70112	1.01325	1.22341

Find and plot the polynomials of degree 1,2 and 3 which best fit this data in the sense of least squares. The MATLAB functions POLYVAL and POLYFIT give you exactly what you need.
2. For the data of problem 1 , find the cubic polynomial $p_{3}(x)=p_{0}+p_{1} x+p_{2} x^{2}+p_{3} x^{3}$ interpolating the data in the sense of least squares by constructing the 12×4 data matrix A and finding the vector $\left(p_{0}, p_{1}, p_{2}, p_{3}\right)^{T}$ in four different ways:
(a) By using the backslash operator.
(b) By forming and solving the normal equations. Note the condition number of the matrix $A^{T} A$.
(c) By using the $Q R$ decomposition.
(d) By using the Singular-Value Decomposition.

All of this is quite easy in MATLAB. Compare with the values found in problem 1.
3. Write a MATLAB program to evaluate $I=\int_{a}^{b} f(x) d x$ using the trapezoidal rule with n subdivisions, calling the result I_{n}. Use the program to calculate the following integrals with $n=2,4,8,16, \ldots, 512$.

$$
\text { (a) } \int_{0}^{1} \sqrt{9+x^{2}} d x \quad \text { (b) } \quad \int_{0}^{1} x^{1 / 4} d x
$$

The exact value of the integral in (a) is 3.05466450615185 .
Analyze emperically the rate of convergence of I_{n} to I by calculating the ratios

$$
R_{n}=\frac{I_{2 n}-I_{n}}{I_{4 n}-I_{2 n}} \text { and } p_{n}=\frac{\log \left(R_{n}\right)}{\log (2)}
$$

In part (b) compute the extrapolated approximation to I,

$$
I \cong I_{4 n}-\frac{\left(I_{4 n}-I_{2 n}\right)^{2}}{\left(I_{4 n}-I_{2 n}\right)-\left(I_{2 n}-I_{n}\right)}
$$

for $n=128$.
4. Repeat problem 3 using Simpson's rule.
5. Apply the corrected trapezoidal rule to the integral in problem 3(a). Compare the results with those of problem 4 for Simpson's rule.
6. Find approximate values of the integrals in problem 3 by computing the Romberg integral $I_{32}^{(5)}$ where $I_{n}^{(0)}$ is the n-panel trapezoid approximation and

$$
I_{n}^{(k)}=\frac{4^{k} I_{n}^{(k-1)}-I_{n / 2}^{(k-1)}}{4^{k}-1}
$$

for n divisible by 2^{k}.
7. The 10 point Newton-Cotes integration rule on $[0,1]$ is

$$
\int_{0}^{1} f(x) d x \approx \sum_{i=0}^{9} w_{i} f\left(\frac{i}{9}\right)
$$

with the w_{i} determined by requiring that the rule be exact for $f(x)=1, x, x^{2}, \ldots x^{9}$. (a) Use MATLAB to find the weights w_{i}.
(b) Apply the rule to the integrals in 3(a) and 3(b). Note the errors.
8. Let $p_{2}(x)$ be the quadratic polynomial interpolating $f(x)$ at $x=0, h, 2 h$. Use this to derive a numerical integration formula I_{h} for $I=\int_{0}^{3 h} f(x) d x$. Use a Taylor series expansion of $f(x)$ to show

$$
I-I_{h}=\frac{3}{8} h^{4} f^{\prime \prime \prime}(0)+O\left(h^{5}\right)
$$

