Т	0	10	20	30
P(T)	.006107	.012277	.023378	.042433
Т	40	50	60	70
P(T)	.073774	.12338	.19924	.31166
Т	80	90	100	110
P(T)	.47364	.70112	1.01325	1.22341

1. The vapor pressure P of water (in bars) as a function of temperature $T(^{\circ}C)$ is

Find and plot the polynomials of degree 1, 2 and 3 which best fit this data in the sense of least squares. The MATLAB functions POLYVAL and POLYFIT give you exactly what you need.

- 2. For the data of problem 1, find the cubic polynomial $p_3(x) = p_0 + p_1 x + p_2 x^2 + p_3 x^3$ interpolating the data in the sense of least squares by constructing the 12×4 data matrix A and finding the vector $(p_0, p_1, p_2, p_3)^T$ in four different ways:
 - (a) By using the backslash operator.
 - (b) By forming and solving the normal equations. Note the condition number of the matrix $A^T A$.
 - (c) By using the QR decomposition.
 - (d) By using the Singular-Value Decomposition.

All of this is quite easy in MATLAB. Compare with the values found in problem 1.

3. Write a MATLAB program to evaluate $I = \int_{a}^{b} f(x) dx$ using the trapezoidal rule with *n* subdivisions, calling the result I_n . Use the program to calculate the following integrals with $n = 2, 4, 8, 16, \ldots, 512$.

(a)
$$\int_0^1 \sqrt{9+x^2} \, dx$$
 (b) $\int_0^1 x^{1/4} \, dx$

The exact value of the integral in (a) is 3.05466450615185.

Analyze emperically the rate of convergence of I_n to I by calculating the ratios

$$R_n = \frac{I_{2n} - I_n}{I_{4n} - I_{2n}}$$
 and $p_n = \frac{\log(R_n)}{\log(2)}$

In part (b) compute the extrapolated approximation to I,

$$I = I_{4n} - \frac{(I_{4n} - I_{2n})^2}{(I_{4n} - I_{2n}) - (I_{2n} - I_n)}$$

for n = 128.

4. Repeat problem 3 using Simpson's rule.

- 5. Apply the corrected trapezoidal rule to the integral in problem 3(a). Compare the results with those of problem 4 for Simpson's rule.
- 6. Find approximate values of the integrals in problem 3 by computing the Romberg integral $I_{32}^{(5)}$ where $I_n^{(0)}$ is the *n*-panel trapezoid approximation and

$$I_n^{(k)} = \frac{4^k I_n^{(k-1)} - I_{n/2}^{(k-1)}}{4^k - 1}$$

for n divisible by 2^k .

7. The 10 point Newton-Cotes integration rule on [0, 1] is

$$\int_0^1 f(x) \, dx \approx \sum_{i=0}^9 w_i f(\frac{i}{9})$$

with the w_i determined by requiring that the rule be exact for $f(x) = 1, x, x^2, \dots x^9$. (a) Use MATLAB to find the weights w_i .

- (b) Apply the rule to the integrals in 3(a) and 3(b). Note the errors.
- 8. Let $p_2(x)$ be the quadratic polynomial interpolating f(x) at x = 0, h, 2h. Use this to derive a numerical integration formula I_h for $I = \int_0^{3h} f(x) dx$. Use a Taylor series expansion of f(x) to show

$$I - I_h = \frac{3}{8}h^4 f^{'''}(0) + O(h^5).$$