1. Consider the integrals (from the last assignment).

$$
\text { (a) } \int_{0}^{1} \sqrt{9+x^{2}} d x \quad \text { (b) } \quad \int_{0}^{1} x^{1 / 4} d x
$$

The exact value of the integral in (a) is 3.05466450615185 . Use Gauss-Legendre integration with $n=2,4,8$ nodes on the integrals of problem 1 . Compare the results with those for the trapezoidal and Simpson methods.
2. Use the MATLAB function QUADL to find approximate values of the integrals 1 (a) and 1(b).
3. We wish to estimate the value of

$$
I=\int_{0}^{\infty} x^{1 / 2} e^{-x} d x=\frac{1}{2} \sqrt{\pi}
$$

(a) Truncate the integral and use QUADL on the finite part.
(b) Try the transformation $x=-\ln t$ on this integral and use QUADL on the new integral. (QUADL will complain but will do it).
(c) Use the 2, 4 and 8 point Gauss-Laguerre rules to estimate the integral. Compare your results with parts (a) and (b) above.
4. Ex. 7, p.215, Atkinson $\xi^{\mathcal{F}}$ Han. Note: $\log x$ means the natural logarithm.
5. Ex. 22, p.219, Atkinson EJ Han.
6. Ex. 1, part (a), p.241, Atkinson \mathcal{B}^{3} Han.
7. Ex. 3, part (a), p.241, Atkinson © Han.
8. Ex. 6, p.241, Atkinson $\begin{gathered}\text { Han. (We did part of this in class.) }\end{gathered}$
9. Ex. 7, p.241, Atkinson \mathcal{E}^{3} Han.

