1.

(a) Implement the bisection method in MATLAB to find the smallest positive root of

$$
\begin{equation*}
e^{-x}=\sin x \tag{1}
\end{equation*}
$$

(b) Solve (1) using the secant method. (Use either a calculator or MATLAB.)
2. Write a MATLAB function Newton $(f, d f, x, t o l)$ to implement Newton's method. You need to supply functions $f(x)$ and $d f(x)\left(f^{\prime}(x)\right)$. The input x is the initial guess and tol is the desired accuracy which should be attained when $\left|x_{i+1}-x_{i}\right|<t o l$. You should limit the number of iterations and report a failure to converge. Use the error function.
(a) Try your function to solve equation (1). Print out the iterates and the function values.
(b) Use your function to find the first ten positive solutions of

$$
x=\tan x .
$$

Note: The careful selection of x is critical.
(c) Try the function on the double root $x=2$ of

$$
x^{3}-x^{2}-8 x+12=0
$$

Use $x=3$ and tol $=10^{-6}$. What is the rate of convergence ?
(d) Newton can be used to find complex roots also. By starting with a non-real initial guess, find the complex roots of

$$
x^{3}+2 x-5=0 .
$$

3. Write down two fixed point procedures for finding a zero of the function $f(x)=$ $2 x^{2}+6 e^{-x}-4$. Check that they converge.
4. Ex. 1, p.106, Atkinson ξ^{3} Han.
5. Consider the mapping $g(x)=c x(1-x)$.
(a) Show that for $0 \leq c \leq 4, g$ maps $[0,1]$ into itself.
(b) Show that if $1<c<3, g$ has a positive fixed point which is attracting.
(c) For $c=3.2$ investigate the dynamics of the iteration $x_{n+1}=g\left(x_{n}\right)$. Certain numbers play a significant role here. Identify them as fixed points of some mapping.
6. Ex. 8, p.107, Atkinson 8 Han.
7. Ex.14, p.108, Atkinson ε^{3} Han.
8. Ex.18, p.109, Atkinson \& Han.
9. Ex. 3, p.364, Atkinson \mathcal{E} Han.
10. Consider the system $A \mathbf{x}=\mathbf{b}$ where

$$
A=\left(\begin{array}{rrrrr}
4 & -1 & 0 & -1 & 0 \\
-1 & 4 & -1 & 0 & -1 \\
0 & -1 & 4 & -1 & 0 \\
-1 & 0 & -1 & 4 & -1 \\
0 & -1 & 0 & -1 & 4
\end{array}\right)
$$

and $\mathbf{b}=(-2,-1,6,7,14)^{\prime}$. Solve the system using
(a) The Cholesky factorization of A (MATLAB: CHOL)
(b) Jacobi iteration.
(c) Gauss-Seidel iteration. (The MATLAB command TRIL might be useful.)

