## AMSC/CMSC 466 FALL 2004 SAMPLE HOUR EXAM I

1. Consider the expression

$$
\frac{1}{1-x}-\frac{1}{1+x}
$$

assuming $x \neq \pm 1$.
(a) For what range of values of $x$ is it difficult to compute this expression accurately in floating-point arithmetic?
(b) Give a rearrangement of the terms such that, for the range of $x$ in part (a), the computation is more accurate in floating-point arithmetic.
2. Assume a decimal (base 10) floating point system having machine presicion $\epsilon_{\text {mach }}=$ $10^{-5}$ and an exponent range of $\pm 20$. What is the result of each of the following floating-point operations
(a) $1+10^{-7}$
(b) $1+10^{3}$
(c) $1+10^{7}$
(d) $10^{10}+10^{3}$
(e) $10^{10} / 10^{-15}$
(f) $10^{-10} \times 10^{-15}$
3. Let

$$
A=\left(\begin{array}{rr}
4 & -2 \\
-2 & 2
\end{array}\right)
$$

(a) Find a lower triangular matrix $L$ such that $A=L L^{T}$ (Choleski factorization).
(b) Let $\mathbf{b}=(10,-4)^{T}$. Use the Choleski factorization to solve $A \mathbf{x}=\mathbf{b}$ by forward elimination and back substitution.
4. In $\mathbf{R}^{2}$, is it possible to have two vectors $x$ and $y$ such that $\|x\|_{1}>\|y\|_{1}$ but $\|x\|_{\infty}<$ $\|y\|_{\infty}$ ? If so, give an example.
5.
(a) How is the condition number of a matrix $A$ defined for a given matrix norm ?
(b) How is the condition number used in estimating the accuracy of a computed solution to a linear system $A \mathbf{x}=\mathbf{b}$ ?
6. Given the three data points $(-1,2),(0,1),(1,2)$ Find the interpolating quadratic:
(a) in the form $a x^{2}+b x+c$ by solving a system of linear equations.
(b) in the Lagrange form
(c) in a Newton form.

Show that the three representations give the same polynomial.
7. Let

$$
s(x)=\left\{\begin{array}{cc}
x+1 & -2 \leq x \leq-1 \\
x^{3}-2 x-1 & -1 \leq x \leq 1 \\
x-3 & 1 \leq x \leq 2
\end{array}\right.
$$

Is $s(x)$ a natural cubic spline ? Explain.

