AMSC/CMSC 466 FALL 2004 SAMPLE HOUR EXAM II

1. We wish to fit the data $(0,1),(1,3),(2,7),(3,10),(4,20)$ to a function of the form

$$
f(x)=a+b x+c e^{x}
$$

in the sense of least squares. Find an equation for the coefficients a, b and c. Do not do any computations.
2. Let

$$
I=\int_{1}^{2} \ln x d x=.3862943611
$$

Compute approximations to I using
(a) The 4 panel trapezoid rule.
(b) The 4 panel Simpson's rule.
(c) The 4 panel corrected trapezoid rule.

Which method gives the best result ?
3. Suppose we use Simpson's rule with 400 panels to approximate

$$
I=\int_{0}^{1}\left(x^{3}+3 x^{2}-x\right) d x
$$

Assuming no roundoff error, what will the result be ? Explain.
4.
(a) Find constants A and B so that the integration rule

$$
\int_{0}^{1} f(x) d x \approx A f(1 / 3)+B f(1)
$$

is exact for all first degree polynomials.
(b) Is the rule exact for second degree polynomials?
(c) Let $f(x)=e^{x}$. Apply the rule to f and compare with the exact value of the integral. Compute the relative error in the approximation.
5. Let $g(x)=\cos x, x_{0}=\pi / 6, h=\pi / 24$.
(i) For this value of h compute the centered difference approximation to $g^{\prime}\left(x_{0}\right)$. Compute the percent relative error in this approximation.
(ii) For this value of h compute the centered difference approximation to $g^{\prime \prime}\left(x_{0}\right)$. Compute the percent relative error in this approximation.
6. Let $f(x)=x^{3}+3 x-6$.
(a) Prove that there is a number α with $1<\alpha<2$ such that $f(\alpha)=0$.
(b) Use the bisection method with the initial interval $[1,2]$ to approximate α with error less than $\frac{1}{16}$.
(c) Let $x_{0}=1, x_{1}=2$. Use the secant method to compute a new approximation to α, x_{2}.
(d) Let $x_{0}=1.5$. Use Newton's method to approximate α. Use the method until successive iterates obtained by your calculator are identical.

