AMSC/CMSC 466 SAMPLE FINAL EXAM

1. Recall that in any computation the relative error is defined as

$$
\text { rel. error }=\frac{\mid \text { error } \mid}{\mid \text { true value } \mid} \text {. }
$$

We are concerned with the evaluation of a function $f(x)$.
(a) Show that if the error in x is small

$$
\text { rel. error in } f(x) \approx \frac{\left|x f^{\prime}(x)\right|}{|f(x)|} \text {. rel. error in } x
$$

The quantity $\kappa=\left|x f^{\prime}(x) / f(x)\right|$ can be considered the condition number of f at x. If κ is large we say f is ill conditioned at x. If κ is small we say that f is well conditioned at x.
(b) Show that for any $x>0, f(x)=x^{1 / 2}$ is well conditioned while for x near $\pi / 2, f(x)=\cos x$ is ill conditioned. What about $f(x)=\sin x$ near $x=0$?
2. Let

$$
A=\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 4 \\
3 & 6 & 7
\end{array}\right), \quad \mathbf{b}=\left[\begin{array}{l}
3 \\
5 \\
1
\end{array}\right]
$$

(a) Use Gauss elimination to show $A \mathbf{x}=\mathbf{b}$ has no solutions.
(b) Prove or disprove the following statement. It is possible to factor A as $A=L U$ with L lower triangular and U upper triangular.
3. Let $\|\mathbf{x}\|$ denote a vector norm on R^{n}.
(a) Define $\|A\|$, the corresponding matrix norm (defined on the set of $n \times n$ matrices).
(b) Recall that for $\mathbf{x} \in R^{n},\|\mathbf{x}\|_{2}=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$. Let D be a diagonal matrix with non zero diagonal elements $d_{1}, d_{2}, \ldots, d_{n}$. Prove that the 2 -norm of D is given by

$$
\|D\|_{2}=\max _{1 \leq i \leq n}\left|d_{i}\right|
$$

(c) Determine $\operatorname{cond}_{2}(D)$ in terms of the d_{i}.
4. Suppose we are given $f(0)=1.0, f(0.5)=1.6, f(1)=1.8$. Also, on $[0,1],\left|f^{\prime}(x)\right| \leq$ $2,\left|f^{\prime \prime}(x)\right| \leq 3,\left|f^{\prime \prime \prime}(x)\right| \leq 5,\left|f^{\prime \prime \prime \prime}(x)\right| \leq 8$.
(a) What is the best estimate of $f(0.4)$?
(b) What is the best estimate of $\int_{0}^{1} f(x) d x$?
(c) What is the best estimate of $f^{\prime}(0.5)$?

In each case bound the error.
5. Find constants $\alpha_{1}, \alpha_{2}, \alpha_{3}$ such that the integration rule

$$
\int_{0}^{1} f(x) d x \approx \alpha_{1} f(1 / 4)+\alpha_{2} f(1 / 2)+\alpha_{3} f(3 / 4)
$$

is exact for all polynomials of degree ≤ 2. For which polynomials will this rule give the correct answer?
6. The function $f(x)=x^{3}+x-11$ has a root α which lies between $x=2$ and $x=3$.
(a) Will the iteration scheme

$$
x_{n+1}=11-x_{n}^{3}, n \geq 0, x_{0}=2
$$

converge to α ? Explain.
(b) Find a number a so that the iteration scheme

$$
x_{n+1}=\frac{11-x_{n}^{3}+a x_{n}}{1+a}, n \geq 0, x_{0}=2
$$

will converge to α. Find x_{1} and x_{2} using your value of a.
(c) Set up Newton's method for solving $f(x)=0$ and use it to find two new approximations x_{1} and x_{2}, starting at $x_{0}=2$.
(d) Let $x_{0}=2, x_{1}=3$. Use the secant method to find a new approximation x_{2}.
7. We wish to solve the system

$$
x^{2} y+y^{2}-x=2, \quad 3 x+y-x^{2} y^{2}=2
$$

by Newton's method. If $\left(x_{0}, y_{0}\right)=(1,1)$ what is $\left(x_{1}, y_{1}\right)$? Do you think that $\left(x_{1}, y_{1}\right)$ is closer to a root than $\left(x_{0}, y_{0}\right)$?

