Readings: Linz $\mathcal{E}$ Wang, Chapter 2.

1. Run the following MATLAB scripts and explain the output.

| $x=1 ;$ | $x=1 ;$ | $x=1 ;$ |
| :--- | :--- | :--- |
| while $x+1>1$ | while $x>0$ | while $x<\operatorname{lnf}$ |
| $y=x ;$ | $y=x ;$ | $y=x ;$ |
| $x=x / 2 ;$ | $x=x / 2 ;$ | $x=2 * x ;$ |
| end | end | end |
| $y$ | $y$ | $y$ |
| $p=\log (y) / \log (2)$ | $p=\log (y) / \log (2)$ | $p=\log (y) / \log (2)$ |

Assume $\beta=2$. What can you infer about the machine constants $t, U$ and $L$ ?
2. Let

$$
f(x)=\frac{e^{x}-1-x}{x^{2}} .
$$

Use MATLAB to compute $f(x)$ for $x=10^{-m}, m=1,2, \cdots, 10$. Use L'hôpital's rule to compute $\lim _{x \rightarrow 0} f(x)$. For $x$ near zero what is a better way to compute $f(x)$ ? (Hint: Use Taylor's theorem on the numerator.)
3. Problem 6, p. 30 Linz $\mathcal{F}$ Wang .
4. Sometimes the loss of significance error can be avoided by rerranging terms in the function using a known identity from trigonometry or algebra. Find an equivalent formula for the following functions that avoids a loss of significance.
(a) $\ln (x+1)-\ln (x)$ for large $x$.
(b) $\sqrt{x^{2}+1}-x$ for large $x$.
(c) $\cos ^{2}(x)-\sin ^{2}(x)$ for $x \approx \pi / 4$.
(d) $\sqrt{\frac{1+\cos (x)}{2}}$ for $x \approx \pi$.
5. The following algorithm estimates the unit roundoff $u$ by a computable quantity $U$ :

$$
\begin{aligned}
& A=4 / 3 \\
& B=A-1 \\
& C=B+B+B \\
& U=|C-1|
\end{aligned}
$$

(a) What does the above algorithm yield for $U$ in six-digit rounded arithmetic ?
(b) What does it yield for $U$ in six-digit chopped arithmetic ?
(c) What are the exact values for $u$ in the arithmetics of (a) and (b) ?
(d) Use the algorithm on MATLAB and your calculator. What do you get?
6. For $\alpha=0.8717$ and $\beta=0.8719$ calculate the midpoint $m$ of the interval $[\alpha, \beta]$ by using the formula $m=(\alpha+\beta) / 2$. First use four-digit decimal chopped arithmetic,
then four digit rounded arithmetic. How reasonable are the answers ? Find another formula for the midpoint and use four-digit decimal (rounded or chopped) arithmetic to calculate the midpoint of $[0.8717,08719]$. Is your formula better or worse ?
7. Use three-digit arithmetic with rounding to compute the following sums (sum in the given order).
(a) $\sum_{k=1}^{6} \frac{1}{3^{k}}$
(b) $\sum_{k=1}^{6} \frac{1}{3^{7-k}}$

Also, compare the answers with the exact sum. Which is better ?
8. Suppose $N$ is an integer. In exact arithmetic, adding $1 / N$ to itself $N$ times yields an answer exactly equal to 1 . In finite precision arithmetic this is not necessarily the case.
Try out the following MATLAB script. Start by typing "format long" then let (i) $N=100,000\left(=10^{5}\right)$ and (ii) $N=131,072\left(=2^{17}\right)$. Compute the error relative to the exact answer ( $=1$ ) in each case. Explain any differences between the two cses.

$$
\begin{aligned}
& y=0 \\
& \text { for } i=1: N \\
& y=y+(1 / N) \\
& \text { end } \\
& y
\end{aligned}
$$

