Readings: Linz & Wang, Section 3.1, Section 8.1 through the first paragraph on p.213.

- 1. MATLAB
 - (a) Let $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Compute both A.[^] 2 and A[^] 2 and explain the difference between the two results.
 - (b) Let $\mathbf{a} = [1 \ 2 \ 3 \ 4]$. Compute both $\mathbf{a} * \mathbf{a}'$ and $\mathbf{a}' * \mathbf{a}$ and explain the difference between the two results.
- 2. MATLAB . Let $\mathbf{w} = \operatorname{rand}(2, 1), \ \mathbf{z} = \mathbf{w}/\operatorname{sum}(\mathbf{w})$. Let

$$P = \begin{pmatrix} .2 & .4 \\ .8 & .6 \end{pmatrix}$$

Compute $P^n \mathbf{z}$ for n = 1, ... 20. What do you notice ?

3. Solve the following systems by Gauss Elimination (by hand).(a)

$$-x_1 + 2x_2 + x_3 = 5$$

$$x_1 + 4x_2 - 3x_3 = -8$$

$$-2x_1 + x_3 = 5$$

(b)

$$x_1 - x_2 + x_3 = 0$$

$$2x_1 + x_2 - x_3 = -3$$

$$x_1 + 2x_2 - 2x_3 = -2$$

- 4. Problem 8, p.38 Linz & Wang . (Use MATLAB .)
- 5. Problem 11, p.39 Linz & Wang. (Use MATLAB.)
- 6. Problem 2, p.215 Linz & Wang. Use the LU decomposition of A to solve $A\mathbf{x} = \mathbf{b}$ where $\mathbf{b} = (-4, -5, 19)^T$.
- 7.
- (a) Let A be an $n \times n$ matrix and $\mathbf{x} \in \mathbf{R}^n$. How many *flops* does it take to form the product $A\mathbf{x}$?
- (b) Let A and B be $n \times n$ matrices. How many *flops* does it take to form the product AB?
- (c) In light of the results of (a) and (b), from the standpoint of efficiency, how should one compute $A^k \mathbf{x}$ for k a positive integer k > 1?