Readings: Linz $8 \mathcal{G}$ Wang, Section 3.1, Section 8.1 through the first paragraph on p. 213.

1. MATLAB
(a) Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$. Compute both $A \wedge^{\wedge} 2$ and $A^{\wedge} 2$ and explain the difference between the two results.
(b) Let $\mathbf{a}=\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right]$. Compute both $\mathbf{a} * \mathbf{a}^{\prime}$ and $\mathbf{a}^{\prime} * \mathbf{a}$ and explain the difference between the two results.
2. MATLAB . Let $\mathbf{w}=\operatorname{rand}(2,1), \mathbf{z}=\mathbf{w} / \operatorname{sum}(\mathbf{w})$. Let

$$
P=\left(\begin{array}{ll}
.2 & .4 \\
.8 & .6
\end{array}\right)
$$

Compute $P^{n} \mathbf{z}$ for $n=1, \ldots 20$. What do you notice ?
3. Solve the following systems by Gauss Elimination (by hand).
(a)

$$
\begin{aligned}
-x_{1}+2 x_{2}+x_{3} & =5 \\
x_{1}+4 x_{2}-3 x_{3} & =-8 \\
-2 x_{1}+x_{3} & =5
\end{aligned}
$$

(b)

$$
\begin{aligned}
x_{1}-x_{2}+x_{3} & =0 \\
2 x_{1}+x_{2}-x_{3} & =-3 \\
x_{1}+2 x_{2}-2 x_{3} & =-2
\end{aligned}
$$

4. Problem 8, p. 38 Linz 6 Wang . (Use MATLAB .)
5. Problem 11, p. 39 Linz \mathcal{E}^{3} Wang . (Use MATLAB .)
6. Problem 2, p. 215 Linz \mathcal{G} Wang. Use the $L U$ decomposition of A to solve $A \mathbf{x}=\mathbf{b}$ where $\mathbf{b}=(-4,-5,19)^{T}$.
7.

(a) Let A be an $n \times n$ matrix and $\mathbf{x} \in \mathbf{R}^{n}$. How many flops does it take to form the product $A \mathrm{x}$?
(b) Let A and B be $n \times n$ matrices. How many flops does it take to form the product $A B$?
(c) In light of the results of (a) and (b), from the standpoint of efficiency, how should one compute $A^{k} \mathbf{x}$ for k a positive integer $k>1$?

