Readings: Linz & Wang, Section 3.2, 3.4, 3.5 up to, but not including, Theorem 3.1, 8.4.

1. The <u>Hilbert matrix</u> of order n, H_n is defined by

$$(H_n)_{i,j} = \frac{1}{i+j-1}, \ i = 1, \dots, n, \ j = 1, \dots, n.$$

 H_n is nonsingular. However, as *n* increases, the condition number of H_n increases rapidly. H_n is a library function in MATLAB, hilb(*n*). Let $n = 10, \mathbf{x} = \text{ones}(10, 1)$ and $\mathbf{b} = H_{10}\mathbf{x}$. Now use the backslash operator to solve the system $H_n\mathbf{x} = \mathbf{b}$, obtaining \mathbf{x}^* . Since we know \mathbf{x} exactly, we can compute $\mathbf{e} = \mathbf{x} - \mathbf{x}^*$, the error, and $\mathbf{r} = \mathbf{b} - H_{10}\mathbf{x}^*$, the residual. Compute these quantities and also $\text{cond}(H_n)$ (a MATLAB function). Show that the two basic principles of solving linear systems by G.E./P.P. in floating point arithmetic hold. How many correct digits does \mathbf{x}^* have ? Repeat with $n = 11, 12, \ldots$. Stop when some component of \mathbf{x}^* has <u>no</u> correct digits.

- 2. Problem 3, p.41 Linz & Wang.
- 3. Problem 5, p.41 Linz & Wang.
- 4. Problem 4, p.55 Linz & Wang.
- 5. Construct a tridiagonal solver along the lines outlined on p.233 of Linz & Wang. Your solver should be a function M-file with four vectors as input and the solution as the output. Test your solver on the problem $A\mathbf{x} = \mathbf{b}$ where A is the 9×9 tridiagonal matrix with 2's on the main diagonal and -1's on the super-and subdiagonals and $\mathbf{b}(j) = .01, j = 1, ..., 9$. As a check, the answer should be $\mathbf{x}(j) = \frac{1}{2}(\frac{j}{10})(1 - \frac{j}{10})$.