Readings: Linz \& Wang, Section 3.2, 3.4, 3.5 up to, but not including, Theorem 3.1, 8.4.

1. The Hilbert matrix of order n, H_{n} is defined by

$$
\left(H_{n}\right)_{i, j}=\frac{1}{i+j-1}, i=1, \ldots, n, \quad j=1, \ldots, n .
$$

H_{n} is nonsingular. However, as n increases, the condition number of H_{n} increases rapidly. H_{n} is a library function in MATLAB, $\operatorname{hilb}(n)$. Let $n=10, \mathbf{x}=\operatorname{ones}(10,1)$ and $\mathbf{b}=H_{10} \mathbf{x}$. Now use the backslash operator to solve the system $H_{n} \mathbf{x}=\mathbf{b}$, obtaining \mathbf{x}^{*}. Since we know \mathbf{x} exactly, we can compute $\mathbf{e}=\mathbf{x}-\mathbf{x}^{*}$, the error, and $\mathbf{r}=\mathbf{b}-H_{10} \mathbf{x}^{*}$, the residual. Compute these quantities and also cond $\left(H_{n}\right)$ (a MATLAB function). Show that the two basic principles of solving linear systems by G.E./P.P. in floating point arithmetic hold. How many correct digits does \mathbf{x}^{*} have ? Repeat with $n=11,12, \ldots$. Stop when some component of \mathbf{x}^{*} has no correct digits.
2. Problem 3, p. 41 Linz \mathcal{F} Wang .
3. Problem 5, p. 41 Linz \& Wang
4. Problem 4, p. 55 Linz \mathcal{B} Wang .
5. Construct a tridiagonal solver along the lines outlined on p. 233 of Linz \mathfrak{E} Wang . Your solver should be a function M-file with four vectors as input and the solution as the output. Test your solver on the problem $A \mathbf{x}=\mathbf{b}$ where A is the 9×9 tridiagonal matrix with 2 's on the main diagonal and -1 's on the super-and subdiagonals and $\mathbf{b}(j)=.01, j=1, \ldots, 9$. As a check, the answer should be $\mathbf{x}(j)=\frac{1}{2}\left(\frac{j}{10}\right)\left(1-\frac{j}{10}\right)$.

