Readings: Linz \mathcal{E} Wang, Sections 4.1, 4.2.

1. Write a MATLAB script which takes as input n and plots both $\sin (x)$ and

$$
S_{n}(x)=\sum_{k=0}^{n}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}
$$

over the interval $[0,2 \pi]$ (on the same graph). Try your script for several values of n and describe the results.
2. Problem 9, p. 61 Linz \& Wang .
3. Problem 1, p. 67 Linz \mathcal{E} Wang. Write a MATLAB script which efficiently generates the matrix for a given n and computes its condition number.
4. Problem 8, p. 68 Linz 8 Wang .
5. Consider the function $f(x)=\sin x$ on the interval $[0, \pi]$. Use the error bound stated in class to determine a step size h so that the error in linear interpolation is $<5 \times 10^{-7}$.
6. The Runge function is

$$
r(x)=\frac{1}{1+x^{2}}, \quad-5 \leq x \leq 5
$$

(a) For $n=5,10,15$, plot $p_{n}(x)$, the polynomial interpolating $r(x)$ at $n+1$ equally spaced points, along with the graph of $r(x)$. Use the MATLAB functions POLYFIT and POLYVAL. Observe what is happening to the graphs. Where is the polynomial fit getting better ? Where is it getting worse ?
(b) Repeat part (a) but now use the interpolation points

$$
x_{j}=5 \cos \frac{(2 j-1) \pi}{2 n+2}, \quad j=1, \ldots, n+1 .
$$

What difference do you observe ?

