ENEE 241/MATH 242 Dr. Wolfe ASSIGNMENT \#6 Due March 30/31, 2004
Readings: Linz \mathcal{G} Wang, Sections 6.2, 6.3.
This assignment is concerned with the computation of the integral

$$
I=\int_{0}^{1} \frac{4}{1+x^{2}} d x=\pi
$$

1. Using MATLAB or your calculator use the following methods to compute approximations to I. In each case give the error.
(a) The simple (1 panel) trapezoid rule.
(b) The 2 panel trapezoid rule.
(c) The 4 panel trapezoid rule.
(d) The simple (2 panel) Simpson's rule.
(e) The 4 panel Simpsons rule.
(f) The simple (1 panel) midpoint rule.
(g) The compound 2 panel midpoint rule.
(h) The compound 4 panel midpoint rule.
(i) The three-eighths rule.
(j) The simple (1 panel) corrected trapeziod rule.
(k) The 2 panel corrected trapezoid rule.
(l) The 4 panel corrected trapezoid rule.
2. Download the scripts trap.m and simp.m from the class website. Use them with $n=8,16,32,64,128,256$ to compute approximations to I. In each case compute the error. What do you observe?
3.

(a) Find constants α_{1} and α_{2} such that the integration rule

$$
I=\int_{0}^{h} f(x) d x \approx \alpha_{1} f(h / 4)+\alpha_{2} f(3 h / 4)=Q
$$

is exact for all linear polynomials.
(b) Is the above rule exact for quadratics ?
(c) Given that the error of the rule is of the form

$$
e=I-Q=c f^{(d)}(\zeta) h^{d+1}
$$

for smooth f, where $0<\zeta<h$, find the integer d and the constant c.
(d) Use the rule to compute an approximation to I. Compute the error. How does it compare with the other methods?

